Quasi-isometries and hyperbolic spaces

Exercice 1 Let G be a group acting on a connected topological space X and assume there is an open subset $U \subset X$ such that G(U) = X. Prove that

$$S = \{g \in G, g(U) \cap U \neq \emptyset\}$$

is a generating set for G.

Exercice 2 Prove that \mathbb{Z} and \mathbb{R} are quasi-isometric.

Exercice 3 Prove that the binary relation "to be quasi-isometric" on the collection of metric spaces defines an equivalence relation.

Exercice 4 Let X and Y be two metric spaces. Prove that they are quasi-isometric if, and only if, they contain cobounded subsets $X' \subset X$ et $Y' \subset Y$ that are quasi-isometric.

Exercice 5 Let X and Y be two metric spaces. A quasi-isometric correspondence is given by two constants $\lambda \geq 1$ et c > 0 and a binary relation $\mathcal{R} \subset X \times Y$ such that

- **1.** For all $x \in X$, there exists $y \in Y$ such that $x\mathcal{R}y$; for all $y \in Y$, there exists $x \in X$ such that $x\mathcal{R}y$:
- **2.** If $x\Re y$ and $x'\Re y'$, then $\frac{1}{\lambda}d_{\mathbf{X}}(x,x')-c\leq d_{\mathbf{Y}}(y,y')\leq \lambda d_{\mathbf{X}}(x,x')+c$.

Prove that X and Y are quasi-isometric if and only if there exists a quasi-isometric correspondence.

Exercise 6 This exercise is devoted to proving that, for any $\varepsilon > 0$, any length space X is $(1 + \varepsilon, 2)$ -quasi-isometric to a graph Γ , in which each edge is isometric to the segment [0, 1]. Let $\delta > 0$.

- **1.** Prove that there exists a maximal collection \mathcal{B}_{δ} of balls of radius δ that are pairwise disjoint in X. Prove that, for any $x \in X$, there exists a ball $B = B(c, \delta) \in \mathcal{B}_{\delta}$ such that $d(x, c) < 2\delta$.
- **2.** Let us consider the graph $\Gamma = (V, E)$, where $V = \mathcal{B}_{\delta}$ and $(B, B') \in E$, $B = B(c, \delta)$, $B' = B(c', \delta)$, if $d(c, c') \leq 1$. Prove that the map $B = B(c, \delta) \in \Gamma \mapsto c \in X$ defines a $(1 + \varepsilon, 2)$ -quasi-isometry, where $\varepsilon = O(\delta)$.

Exercice 7 Let G be a finitely generated group.

- 1. Prove that if H < G is a finite index subgroup, then it is also finitely generated and it is quasi-isometric to G. To this purpose, we may let H act on the Cayley graph of a finite generating set of G.
- 2. Prove that if N is a finite normal subgroup of G then G and G/N are quasi-isometric.

Exercice 8 Let T_n be the regular infinite tree where each vertex has n edges to it, $n \ge 3$. Let us endow T_n with the length distance that makes each edge isometric to [0,1].

- 1. Let us color the edges of T_3 with three colors a, b and c in such a way that each vertex is the endpoint of an edge of each color. Let us consider the equivalence relation $x \sim x'$ if $\{x, x'\}$ are the ends of an edge of color a.
 - a) Prove that T_3/\sim is isomorphic to T_4 .
 - b) Prove that T_3 and T_4 are quasi-isometric.
- **2.** Prove that T_m and T_n are quasi-isometric if $m, n \geq 3$.
- **3.** Deduce that the free groups \mathbb{F}_m and \mathbb{F}_n are quasi-isometric as soon as $m, n \geq 2$.

Exercice 9 Let g be an isometry of a metric hyperbolic space X.

1. Prove that the following limit exists and is independent of the point $x \in X$

$$\tau(g) = \lim_{n \to \pm \infty} \frac{d(x, g^n(x))}{n} = \inf_{n \ge 1} \frac{d(x, g^n(x))}{n}.$$

We may apply Fekete's lemma on subadditive sequences.

- 2. Prove that the following properties are equivalent.
 - a) g is a loxodromic isometry;
 - b) for all $x \in X$, $\{g^n(x)\}_n$ is a quasigeodesic;
 - c) $\tau(g) > 0$ holds.

Exercice 10 Let X be a hyperbolic geodesic proper metric space, let $a \in \partial X$ and let g be an isometry that fixes the point a.

- 1. Prove that $B(g) = \lim_{n \to \infty} \frac{1}{n} \beta_a(x, g^n x)$ is well-defined, and does not depend on the point $x \in X$.
- **2.** Prove the existence of a constant $C \ge 0$, $C = C(\delta)$, such that, for all $x \in X$, $|\beta_a(gx, x) B(g)| \le C$ holds.
- **3.** Prove that $B(g) \neq 0$ if, and only if g is loxodromic.
- **4.** Prove that if G is a parabolic group with fixed point a then, there exists $C \ge 0$ such that, for any $g \in G$ and any $x \in X$, $|\beta_a(x, gx)| \le C$ holds.

Exercice 11 Let G be a group acting geometrically on a hyperbolic geodesic proper space X.

- 1. Prove that any element $g \in G$ is either finite or loxodromic.
- **2.** Prove that its action is cocompact on the set $\Theta(\partial X)$ of distinct triples.
- **3.** Prove that any point of ∂X is conical for G.

Exercice 12 Let G be a group generated by a finite S and let Z be its Cayley graph. We assume that Z is hyperbolic in the sense of Gromov.

- 1. Prove that there exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in (0, \varepsilon_0)$, there is a distance d_{ε} on G and a constant $C \ge 1$ such that $(1/C)e^{-\varepsilon(x|y)_e} \le d_{\varepsilon}(x,y) \le Ce^{-\varepsilon(x|y)_e}$ holds for all $x,y \in G$. We fix $\varepsilon \in (0, \varepsilon_0)$ as above.
- **2.** Let $\overline{G}_{\varepsilon}$ be the completion of (G, d_{ε}) and prove that $\overline{G}_{\varepsilon} \setminus G$ is homeomorphic to the Gromov boundary $\partial_G Z$ of Z.
- **3.** Set $f(r) = e^{-\varepsilon r}$ for $r \ge 0$.
 - a) Check that f is a Floyd gauge and that there exists a constant $C_f \ge 1$ such that, for any edge (x,y), one has $(1/C_f)e^{-\varepsilon(x|y)_e} \le f(d(e,\{x,y\})) \le C_f e^{-\varepsilon(x|y)_e}$ holds for all $x,y \in G$.
 - b) Let $x, y \in \mathbb{Z}$, and let γ be a geodesic segment in Z joining x and y. Prove that there exists a constant $C_+ \geq 1$ that only depends on the hyperbolicity constant of Z such that $\ell_f(\gamma) \leq C_+ d_{\varepsilon}(x, y)$ holds. One may consider the associated tripod $\{e, x, y\}$ to estimate the Floyd-length of γ .
 - c) Let us consider a curve γ joining x and y that is not necessarily geodesic. Prove that there exists a constant $C_- \ge 1$ such that $\ell_f(\gamma) \ge (1/C_-)d_{\varepsilon}(x,y)$.
 - d) Prove that the Floyd boundary $\partial_f Z$ and the Gromov boundary $\partial_G Z$ are bi-Lipschitz equivalent.