UNIVERSITE D'AIX-MARSEILLE Groups and dynamics

General properties of convergence groups

Exercice 1 Let G be a closed convergence group acting on a metrizable compact space X. Let K, L be two disjoint compact subsets of X. Prove that the set E of non-loxodromic elements $g \in G$ such that $g(K) \cap K \neq \emptyset$ et $g(L) \cap L \neq \emptyset$ is compact.

Exercice 2 Let G be a closed Abelian and non-compact convergence group acting on a metrizable compact space X.

- 1. Prove that the set of fixed points of a given element $h \in G$ is G-invariant.
- 2. Prove that one of the following holds
 - Either there is a unique fixed point p under G. All of its elements are either elliptic or parabolic.
 - Or there is a G-invariant set formed of two points $\{a,b\}$. There is a properly discontinuous and cocompact action of \mathbb{Z} on $X \setminus \{a,b\}$ and on G. All elements of G are either elliptic or loxodromic.

Exercice 3 Let G be a locally compact convergence group acting on a metrizable compact space X. Let H be a normal subgroup of G.

- 1. Prove that if H is compact, then $\Lambda_H=\varnothing$ and H acts trivially on $\Lambda_G.$
- 2. Prove that if H is non compact then either Λ_H is a single point and G admits a fixed point or $\Lambda_H = \Lambda_G$.
- 3. Assume that G is of general type. Prove that there exists a unique maximal normal compact subgroup W, and there exists a compact space Y and a continuous, onto, equivariant map $p: X \to Y$ such that the restriction of p to Λ_G is a homeomorphism onto its image and the action of G on Y yields a faithful convergence action of G/W.

For the remaining exercises, we consider the following setup.

Let X, Y be two metrizable compact spaces. Let $W_{K,V} = \{h \in \Phi, \ h(K) \subset V\}$, where $K \subset X$ is compact and $V \subset Y$ is open. Set

$$Z = (X \times Y) \sqcup Homeo(X; Y)$$

with the following topology. Neighborhoods of elements $\phi \in \text{Homeo}(X; Y)$ are of the form $W_{K,V}$ where $\phi(K) \subset V$. For points $(x, y) \in X \times Y$, a basis of neighborhoods will be given by sets of the form $(U \times V) \sqcup W_{X \setminus U, V}$. We shall also consider a closed subset $\Phi \subset \text{Homeo}(X; Y)$ and the corresponding space $Z_{\Phi} = (X \times Y) \sqcup \Phi$ with the induced topology.

Exercice 4 We use the above notation.

- **1.** Prove that Z is Hausdorff.
- **2.** Show that a sequence $(\phi_n)_n$ in Homeo(X; Y) tends to $(x, y) \in X \times Y$ in Z if and only if (ϕ_n) is a convergence sequence with base (x, y).
- **3.** Show that Z_{Φ} is compact if and only if Φ has the convergence property, i.e., any $\Phi' \subset \Phi$ is either relatively compact or contains a convergence sequence.

Exercice 5 We assume that Φ satisfies the convergence property. Let $\widehat{\Lambda} = \overline{\Phi} \cap (X \times Y)$ where $\overline{\Phi}$ is the closure in Z.

- 1. Prove that $\widehat{\Lambda}$ is compact.
- **2.** Show that $(x,y) \in \widehat{\Lambda}$ if and only if there is a convergence sequence $(\phi_n)_n$ tending to (x,y) in Z.

Exercice 6 Let us consider the action de Homeo(X) × Homeo(Y) on Homeo(X; Y) given by ρ_c : $(h_X, h_Y) \cdot \phi = h_Y \circ \phi \circ h_X^{-1}$ and assume $\Phi \subset \text{Homeo}(X; Y)$ satisfies the convergence property. For any $h = (h_X, h_Y) \in \text{Homeo}(X) \times \text{Homeo}(Y)$, write $\hat{h} = \rho_c(h)$.

- **1.** Prove that, for any $h = (h_X, h_Y) \in \text{Homeo}(X) \times \text{Homeo}(Y)$, the set $\widehat{h}(\Phi)$ also satisfies the convergence property and \widehat{h} defines a homeomorphism $\widehat{h} : Z_{\Phi} \to Z_{\widehat{h}(\Phi)}$.
- 2. Prove that the stabilizer H_{Φ} of Φ in $Homeo(X) \times Homeo(Y)$ acts continuously on Z_{Φ} .

Exercice 7 Let $\Phi \subset \text{Homeo}(X, Y)$ be closed with the convergence property.

- **1.** Show that the map $\phi \mapsto \phi^{-1}$ induces an equivariant homeomorphism $\iota : \mathbb{Z}_{\Phi} \to \mathbb{Z}_{\iota(\Phi)}$ such that $\iota(x,y) = (y,x)$.
- **2.** Prove that $\iota(\widehat{\Lambda}_{\Phi}) = \widehat{\Lambda}_{\iota(\Phi)}$.
- **3.** Deduce that if (ϕ_n) is a convergence sequence of base (x, y) then (ϕ_n^{-1}) is a convergence sequence of base (y, x).

Exercice 8 We now assume that X = Y and that $\Phi = G$ is a convergence group. Define on $Z_G = (X \times X) \cup G$ the equivalence relation generated by the relation $(x,y) \sim (x',y')$ if y = y' for $(x,y),(x',y') \in X \times X$. Let $X_G = Z_G/\sim$ be endowed with the quotient topology and $p: Z_G \to X_G$ be the canonical projection.

- 1. Prove that X^2/\sim is homeomorphic to X.
- **2.** Prove that neighborhoods of $X \times \{y\}$ in Z_G are satured for all $y \in X$ and that they define a basis of neighborhoods of $p(X \times \{y\})$.
- **3.** Prove that X_G is compact.
- **4.** Show that the restriction $p: G \to X_G$ is a homeomorphism on its image.
- **5.** Prove that $\Lambda_{G} = p(\widehat{\Lambda}_{G})$ and $\Omega_{G} = G \sqcup (X \setminus \Lambda_{G})$.