7. GEOMETRIE QUASICONFORME

L’objet de ce chapitre est de fournir quelques pistes qui justifient les allégations du
paragraphe 5.2. Cela concerne en particulier le fait qu’un homéomorphisme quasiconforme
est quasimobius, ainsi que leurs propriétés analytiques. On propose de s’approcher de ce
probleme en utilisant la notion de module de familles de courbes.

Certaines propriétés sont valables dans les espaces métriques mesurés. Dans un espace
métrique, on écrira la distance entre deux points = et y en notation polonaise |z — y|. Si
B = (zp,rp) est une boule et A > 0, alors AB désigne la boule concentrique B(zg, A\rp)
de rayon multiplié par .

Un espace métrique mesuré (X, u) est dit Q-Ahlfors régulier si p est une mesure de

Radon, et si, pour tout R € [0,diam X] et tout x € X, on a u(B(x, R)) < R®.

7.1. Modules de courbes

Un principe de L. Ahlfors et A.Beurling exprime que tout invariant conforme est une
fonction du module d’une famille de courbes bien choisies. Nous en verrons plusieurs

illustrations.

Courbes rectifiables.— On peut consulter [V&il, Chap. 1] dans le contexte euclidien.
Les arguments dans les espaces métriques sont des adaptations sans malice.
Une courbe v dans (X, d) est une application continue d’un intervalle compact I de R

dans X. On peut, comme dans les espaces euclidiens, définir la longueur de ~ par

(y) =sup Y d(y(t;),¥(tjs1))

ol le supremum est pris sur toutes les subdivisions (¢;)o<;j<, de I telles que [to,t,] = I.
Si cette longueur £() est finie, on dira que la courbe est rectifiable. On définit alors la
fonction longueur, croissante, s, : I — [0,£(7)] par sy(t) = £(7|q,). Pour tout sous-
intervalle [a,b] C I, on a £(7|4) = 54(b) — s,(a).

Parmi les courbes rectifiables, on privilégie les paramétrages absolument continus pour

lesquels le calcul différentiel est performant.

DEFINITION 7.1. — Soient a < b deuz réels (finis). On dit qu’une application f : [a,b] —
X est absolument continue (AC) si, pour tout ¢ > 0, il existe 6 > 0 tel que pour tout
a<a; <b <ay<by < ..<b, <btelque) |b;—a;| <0, onaitd d(f(b), f(a;)) <e.

On a la caractérisation fondamentale sur R suivante.

PROPOSITION 7.2. — Une application f : [a,b] — R est absolument continue si et seule-
ment si il existe h € L'(a,b) telle que

f@) = fl@)+ [ h(oat.
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En ce cas, [ est dérivable presque partout, et sa dérivée coincide avec h. De plus, les for-

mules de changement de variables et d’intégration par parties sont vraies pour les fonctions

AC.

On en déduit, pour une courbe v : I — X rectifiable, ¢(y) > [ ; 5., avec égalité si et
seulement si v est AC.

PROPOSITION 7.3. — Soit v : I — X rectifiable, alors il existe un chemin 1-lipschitzien
vs 0 [0,4(y)] = X tel que v =5 0s,.

Dans ce cas, on dit que 7y est paramétrée par longueur d’arc v, : [0, 4(7)] — X.

PROPOSITION 7.4. — Soit v : I — X une courbe rectifiable. On a

. d(ys(t+h), st —h)) o d(y(t+h),y(t=h)
i 21| =Lt Jim 21| = (1)

presque partout sur leurs ensembles de définition.

Pour toute fonction borélienne p : X — [0, 00], on définit

£(v)
/pds—/ pos(t

DEFINITION 7.5 (Module de familles de courbes). — Soient (X, 1) un espace métrique
mesuré, I' une famille de courbes de X et p > 1 un réel. On définit le p-module de I" par

mod,[" = inf/ pldu
X

ou linfimum est pris sur toutes les métriques (dites admissibles) p : X — [0,00] telles
que, pour toute courbe rectifiable v € T, f7 pds > 1.

Il suffit en général de se restreindre aux familles de courbes suivantes.

DEFINITION 7.6 (Condensateurs et capacités). — Si X est un espace métrique, un conden-
sateur est défini par une paire de continua disjoints {E, F}. On note T'(E, F) la famille
des courbes qui joignent E et F'. On définit la p-capacité du condensateur par

cap,(E, F) = mod,(E, ') = mod,I'(E, F) .
Donnons quelques propriétés élémentaires du module.

PROPOSITION 7.7. — On a les propriétés suivantes :
(1) mod, (#) = 0
(2) si'y C T'y, mod,I'y <mod,I's;

(3) siT'y et T'y sont deux familles de courbes telles que toute courbe vy, dans I'y posséde

une sous-courbe vy, € I'y, alors mod,I'; < mod,I';.

(4) Si (I'y), est une suite de familles de courbes, alors mod,(UI'y,) <> mod,(T',).
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(5) Si T n’a pas de courbes rectifiables et si chaque courbe est dans une boule fixée (de

rayon bornée), alors mod,I' = 0.

Les modules mod,, définissent donc une famille de mesures extérieures sur les familles
de courbes. D’apres ci-dessus, le module d’une famille de courbes ne dépend que de ses
courbes rectifiables, et si Iy C I' est de module nul, alors mod,I" = mod,(I" \ T'y).

On note I';.; la famille des courbes rectifiables de X. Il vient mod,(I") = mod,(I'N[;¢ct)-

PROPOSITION 7.8. — On a mod,I' = 0 si et seulement si il existe p € LP telle que
fv p = 00 pour toute courbe v € I.

On dira qu’une propriété est vraie pour p-presque toute courbe si elle n’est pas vérifiée

sur une famille de courbes de p-module nul.

LEMME 7.9 (Fuglede). — Soit I' une famille de courbes. Si (p,,) est une suite de métriques
admissibles qui converge dans LP vers p, alors

[ron
7

On motive cette notion de modules en montrant que c¢’est un invariant conforme :

pour p-presque toute courbe.

ProproSITION 7.10. — Soit f : M — M’ un difféomorphisme conforme entre deux

variétés riemanniennes de dimension n > 1. Si I' est une famille de courbes sur M
et f(T') désigne la famille {f(v),y € T'}, alors

mod,,I" = mod,, f(T") .
DEMONSTRATION. Si ¢ est une métrique admissible pour f(I"), on définit

p=(00f)-|Df|.
On obtient par changement de variables et du fait que le jacobien d’une transformation

conforme est la puissance n-ieme de la norme de sa dérivée :

moanS/ ,0":/ o
M I

donc mod,I' < mod,, f(I") et on conclut par symétrie. [

7.2. Applications quasiconformes et variantes

On peut consulter [Vail, Hei, HK, V&i2]. On définit plusieurs classes d’homéomorphismes
basées sur un assouplissement des propriétés des transformations conformes.

Soit f: S™ — S™ un homéomorphisme.

Etant donné un homéomorphisme n : R, — R, on dit que f est n-quasisymétrique si
pour tous z,y, z tels que d(z,y) < td(z, 2), on ait d(fz, fy) < n(t)d(fz, fz).
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L’homéomorphisme f est 0-quasimobius s’il existe un homéomorphisme 6 : R, — R,

tel que, pour tout a,b,c,d € X deux a deux disjoints, on a
LOBHOIUESOTP (CEURCSEN
[fla) = F(A)] |f(e) = f(d)] ~ \la—c [b—d|
REMARQUE 7.11. — Soit X un espace métrique. Si z1, s, X3, T4 sont quatre points dis-
tincts de X, on définit

min{|a:1 — Z9/, |$3 - $4|}

<$1,J}2,$3,$4> = min{\xl _ [L‘3|, |I2 —ZL'4|} .

Alors

<$1,$27$37$4> < UO([$17$27$3,I4D et [$1,$2,$3,$4] < Th(<$1,l‘2,$3,$4>)
ou
no(t) =t+ V2 +t and n(t) =t2+1).
Cela signifie que I'on peut remplacer le birapport par cette nouvelle notion quantitative-

ment, a prior: plus intuitive.

Notons

Lg(z,r) = sup |f(x)— f(y)l,

lz—y|<r

Ce(z,r) = inf |f(z)— f(y)].

lz—y|>r
On dit que f est métriquement quasiconforme s’il existe une constante H telle que,
pour tout x € X,
Hy(x) = limsupM <H.
r—0 Lp(w,7)
L’homéomorphisme f est géométriquement quasiconforme s’il existe une constante K
telle que, pour toute famille de courbes I' de X,

1
?modnf < mod, f(I'") < Kmod,I".

L’homéomorphisme f est analytiquement quasiconforme si f € WL et 81l existe une
constante Ko telle que |D, f|" < Kol|det D, f| pp., ou D, f désigne la matrice jacobienne
que ’on suppose inversible pp.

THEOREME 7.12. — Soit f : S" — S™ un homéomorphisme. Les propriétés suivantes sont

équivalentes.

(1) f est quasisymétrique,

(2) f est quasimébius,

(3) f est géométriguement quasiconforme,
(4) f est métriquement quasiconforme,
(5)

5) f est analytiquement quasiconforme.
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Si l'une de ces propriétés est satisfaite, alors f est absolument continu et absolument

continu sur n-presque toute courbe.

La remarque 7.11 permet de montrer que si f est n-quasisymétrique alors f est 6-
quasimobius, ou # ne dépend que de 1. Réciproquement, un homéomorphisme #-quasimobius
est localement n-quasisymétrique ot 7 ne dépend que de 6, donc est métriquement 7(1)-
quasiconforme. En revanche, le controle global de n ne dépend pas que de 6, mais aussi
de I'image de trois points distincts.

Le reste du chapitre vise a justifier les autres propriétés. On étudie ensuite les suites

d’homéomorphismes quasiconformes et on montre une version du théoreme de Liouville.

7.3. Absolue continuité sur presque toute courbe des homéomorphismes

quasiconformes

On suit [BKR].

Espaces de Sobolev.— Nous allons présenter les espaces de Sobolev basés sur la notion
de gradient supérieur selon N. Shanmugalingam [Sha).

DEFINITION 7.13. — Soient U C X un owvert et f : U — Y wune application mesurable
entre espaces métriques. Un gradient supérieur g de f est une application mesurable g :

U — Ry telle que, pour toute courbe rectifiable ~y : [0,1] — U, on ait

A(f(+(1)), F((0)) < / g.

Y

EXERCICE 7.14. — Soient v : I — X une courbe rectifiable et f : X — Y une application
entre espaces métriques muni d’un gradient supérieur g. L’ application fo~ys est absolument

continue pour toute courbe vy telle que g o~y est intégrable.

On dit que f|, est absolument continue si 7 est rectifiable et f o 74 est absolument

continue.

On parlera de gradient supérieur p-faible si g € LV (U) et si 'inégalité ci-dessus est
valide pour p-presque toute courbe. Notons que si g est un gradient p-faible, alors la
proposition 7.8 nous construit une suite de gradients supérieurs (g,) qui converge dans

L? vers g par convergence dominée.

Exemple.— La fonction
) 1
Ly(w) = limsup ~sup{d(/(x), /1)), d(z.y) <7}
T—

est borélienne. C’est un gradient supérieur si f|, est AC pour toute courbe rectifiable
7. En effet, on suppose que v est paramétrée par longueur d’arc. Si f|, est absolument
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continue, alors l'application sfo, : t — ¢(f o ¥([0,¢])) est AC, donc il existe h” mesurable
telle que, pour tout intervalle [a,b] C [0, £(7)], on ait

(s orat)) = [ 1

Ord(f(y(t—s)), f(v(t+s))) < 2Ls(v(t), s) donc le théoreme de différentiation de Lebesgue
et la proposition 7.4 impliquent h” < L¢ presque partout.

Remarque.— Si u € C'(R"), alors |Vu| est un gradient supérieur de wu.

Fait 7.15. — Sotent U C X un ouvert, u : U — Y une application mesurable entre es-
paces métriques et g un gradient supérieur de u. Pour toute courbe v : I — X paramétrée

) /
par longueur d’arc, on a go~y > 8, presque partout.

DEMONSTRATION. On suppose 7 et u o« rectifiables. On a donc

t+h
/ goy > d(uor(t+h),uory(t—h))
t—h

donc la proposition 7.4 et le théoreme de différentiation de Lebesgue impliquent goy > ¢

UO’Y
presque partout. ]
DEFINITION 7.16 (Espaces de Sobolev). — Soient (X, xg, 1) un espace mesuré pointé

et Y un espace métrique. L’espace de Sobolev WHP(X|Y) est l'ensemble des fonctions
mesurables f : X — Y qui admettent un gradient supérieur p-faible et telles que la
fonction u : x — dy (f(z), f(zo)) soit LP-intégrable.

THEOREME 7.17 (N.Shanmugalingam [Sha, Th.4.5]). — Si Q est un domaine de R",

alors la définition classique et celle ci-dessus des espaces de Sobolev W'P(Q) coincident.

EXERCICE 7.18. — Montrer que si f € I/Vllo’p(X, Y), alors f est absolument continue sur

C

p-presque toute courbe.

THEOREME 7.19. — Un homéomorphisme quasiconforme f : X — Y entre espaces
métriques Q-Ahlfors-réquliers appartient a I/VII’Q(X, Y).

oc

Nous commengons par un lemme de recouvrement et en tirons des conséquences.

LEMME 7.20. — Soit X un espace métrique précompact et B une collection de boules
fermées B(x,r(x)) centrées en chaque point de X et de rayon uniformément borné. Alors
il existe une famille finie ou dénombrable de boules B; = B(z;,r;) € B recouvrant X avec
les propriétés suivantes.

(1) On a B(x;,r;/3) N B(xj,7;/3) =0 dés que ¢ # j.
(2) Sii# j, alors ou bien x; ¢ B; et B; \ B; # 0, ou bien x; ¢ B; et B; \ B; # ().
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LEMME 7.21. — Soit f : X — Y un homéomorphisme ou X et Y sont des espaces
métriques avec X précompact. Soit B une famille de boules vérifiant les conclusions du
lemme 7.20 et tel que, pour chaque B(z,r(x)) € B, L¢(z,r(z)) < Hls(z,r(x)). Alors
diam f(B) . diam f(B’)
B _— B — | =
(0. Bt ) s (s, Tt ) =0
pour toutes boules B = B(x,r(x)) et B’ = B(a',r(z")) dans B avec x # '

Démonstration. — On utilisera ’observation
B(f(x),(1/3)d(f(x), f(z'))) N B(f(z), (1/3)d(f(x), f(z))) =0

obtenue par l'inégalité triangulaire. On peut supposer ' ¢ B. Puisque

5 (), S5 c p

on a
di B
0 1)~ f)] > BRI
Si on a aussi ' ,
1)~ (o) > PRIE)
alors on a . ‘ /
B (f(x), dlail)g(B)) "B (f(x'), dlarln()];B )) s
Sinon, prenons z € B\ B’; il vient
di B’
1) = F@I+ 1)~ F@) = 1)~ fa)] > TS

de sorte que

, diam f(B’) _ diam f(B’)
> .
diam f(B) + Vi > Vi
Par conséquent
_ diam f(B’)
> —
9) diam f(B) > oH

Par (8) et (9), on obtient

- diam f(B) - diam f(B')

‘f(l‘) - f(xlﬂ - 2H = 12H2
Donc on a 1 #(B) 1 #(B)
. B i B
(760, I 0 (g0, D) .

O

Nous utiliserons dans la suite le lemme suivant di a J. Stromberg et A. Torchinsky [ST]
dans 'espace euclidien :
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LEMME 7.22. — Soit B une famille de boules dans un espace Ahlfors-régulier X. On
associe a chaque boule B un réel ag > 0. Soit A > 1 et p > 1. Il existe une constante
C > 0 telle que

<C-

Z apX\B

BeB

Z apXB

BeB

Lp Lp
DEMONSTRATION DU THEOREME 7.19. II suffit de trouver, dans chaque boule fermée de

rayon finie B, une fonction borélienne p € LQ(E) telle que

F((0) — F(r(1)] < / p

g
pour Q-presque toute courbe 7 : [0, 1] — B.

Pour chaque n > 1, on note I, la famille de courbes v dans B telles que diam~y > (1/n).
On construit une suite de gradients supérieurs a I’échelle 1/n, dont une limite produira
un gradient supérieur qui sera L@-intégrable.

Si z € B, on considére un rayon r, €]0,1/2n[ tel que Li(z,ry) < 2HCs(z,7,).

On applique le lemme 7.20 aux boules { B(x,7,)} et on désigne par B = B(n) le nouveau
recouvrement de B.

Posons I )
o — 223: f(jf—’”xB
Sivyel,, alors
[rz2 3 i) = Y dian f(5) 2 1£60) - F60)
v Biﬂ'wé@

puisque {f(B;)} recouvre f(7).

Le lemme 7.22 implique
L Ty Ty @
/ 93 /Z%stmi-

Il vient de la régularité de X que
/ﬂg <S> Ly(wi,r)?.
BeB
Mais
Ly(s,7:)9 = py (B(f (w:), diam B(f (), Ly (i, ) /120H?)))

et puisque ces boules sont deux a deux disjointes, on peut conclure
[ o8 surisa+1mB) < oe.

Nous avons prouvé que, pour chaque n > 1, pour toute courbe v € I',,, on a f7 Pn =

|f(v(1)) = f(~(0))|. De plus, il existe une constante M < oo telle que ||pn|/re < M pour
tout n > 1.
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Par le théoreme de Banach-Alaoglu, il existe une sous-suite (p,, ) qui converge dans la
topologie faible-* de L vers une fonction borélienne p. On déduit du lemme de Mazur
que 'on a convergence d'une combinaison convexe (py) de (py, ) vers p dans LS.

Observons que si vy € I',, alors, pour tout k assez grand, f,y P > | f(v(0)) — f(v(1))]

Le lemme 7.9 implique

/pzu@m»—ﬂwnn

.
pour ()-presque toute courbe de UIL',,. [ |

Sif: (X, pu) — (Y,v) est un homéomorphisme entre espaces mesurés, on peut définir la
mesure f*v sur X en posant (f*v)(A) = v(f(A)). D’apres le théoreme de Radon-Nikodym,
il existe v, < p et vy L p telles que f*v = v, + vs.

DEFINITION 7.23 (dérivée volumique). — La dérivée volumique de f est
dv,
dp

Hf =

On a donc v(f(A)) > [, puy pour tout borélien A C X. Si u est Ahlfors réguliere (plus
généralement une mesure doublante), alors le théoreme de différentiation de Lebesgue
implique que pour u-presque tout x € X on a

o MU (B )
Hile) == Bl

Si f est absolument continu i.e., si vy = 0, alors

vumwzlgf

pour tout borélien A C X, et on a la formule de changement de variables

/s@dv—/ @ o flusdp,

pour toute fonction borélienne ¢ € L'(v).

COROLLAIRE 7.24. — Sous les hypothéses du théoréeme 7.19 il existe une constante K
telle que

Ly(2)? < Kpg(x)

presque partout, ot py est la dérivée volumique de f.

DEMONSTRATION. On remarque que

B(f(x)v Lf(CL’,T)/(QH)) - B(f(x),ff(x,r)) - f(B(ZL’,T))
Donc
Ly(z,m)? < py (f(B(x,7)))

et par le théoreme de différentiation de Lebesgue, on en déduit que L? < g presque
partout. m
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COROLLAIRE 7.25. — S§i f : S — S™ est métriguement H-quasiconforme, n > 2, alors

f est H" '-analytiquement quasiconforme et différentiable presque partout.

DEMONSTRATION. Le théoréme de Stepanoff implique qu'une fonction f : S* — S™ est
différentiable presque partout sur 'ensemble { L < oo}. On déduit donc la différentiabilité
presque partout de f du corollaire 7.24. La différentiabilité en un point x montre alors
que |D, f|" = Hy(z)"t|det D, f|. |

On définit 'application

gs(x) = Hlimsup

r—0

(uy(f(B(x,T))))l/Q
px (B(z,r))
Cette application est clairement borélienne.

PROPOSITION 7.26. — 5% f est quasiconforme alors il existe une constante C' > 0 telle

que lapplication Cgy soit un gradient supérieur QQ-faible associé a f.

DEMONSTRATION. Comme f € VVILQ(X, Y), f est AC sur Q-presque toute courbe. On

oc

peut donc supposer que v : [0, L] — X est un chemin rectifiable paramétré par longueur
d’arc et que f|, est AC.
Pour tout z € v, il existe r, > 0 arbitrairement petit tel que

f(B(z,1.)) C B(f(2), Ly(z,12)) C B(f(2),2H;(z,712)).
Du coup, si y(t) = z alors
diam (f 0 y)(t — 7oyt +12[) < 4H L (2,72)) S Huy (f(B(2,72)))V9.
Soit € > 0; pour j € Z, on considere
By ={t€l0,L[, 27" < g;(v(t)) <2’}

Pour t € £, on peut trouver r, assez petit pour que

2, r.)))Ye
HY(f(B<T7 z))) 5 gf(z) ’

donc diam (f o y)(Jt — ro, t +1.[) < 20, .
Soit U; D E; un ouvert tel que £(U;) < ((E;) + /2%, On peut s’arranger pour que

|t—r.,t+r,[C U; pour chaque t € Ej;. On extrait un sous-recouvrement (I, ;) par le lemme

7.20; on peut méme s’arranger pour qu'un point x n’appartienne au plus qu’a deux tels

27 Z T2

210(U;)
24(E;) + /2

/ gf+€/2m.
VIE;j

J

intervalles. On obtient

N

Z diam f(y(I;;))

N N

N
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Soit F les points pour lesquels gf oy = 0. On montre que ¢(f(F)) = 0 en utilisant les
estimations ci-dessus. Soit G les points pour lesquels gy o v est infini. Si ¢(G) > 0, alors
on a bien 'inégalité recherchée. Sinon, ¢(G) = 0 et par continuité absolue, on a aussi
((f(G)) = 0.

Comme (I;;);; recouvre [0,L] a un ensemble nul pres, il vient en rassemblant nos

différentes estimées

FO ) = F((0)] < / .

v
|

PROPOSITION 7.27. — Soit f : X — Y un homéomorphisme quasiconforme entre deux

espaces métriques propres Q-Ahlfors régquliers, alors

modgl' < modg f(I).

DEMONSTRATION. Si ¢ est admissible pour f(T'), on pose

p=ocof-gs.

Comme f est absolument continue sur presque toute courbe, il suffit de considérer v € I’
paramétrée par longueur d’arc telle que f oy est absolument continue. On rappelle que,
comme gy est un gradient supérieur, on a gyoy > s’fOV presque partout. Notons foy = [os

ol [ est un paramétrage par longueur d’arc et s la fonction longueur de f o~. Du coup,

Lp:Laof-gf:/<aoﬂos><gfov>z/<ooﬂ>os-s':/Maz1

car s est absolument continu. Par ailleurs,
[ = [eonted = [wonu < [

COROLLAIRE 7.28. — Si f : S® — S", n > 2, est analytiquement Ko-quasiconforme,
alors mod,,I' < Komod,, f(T").

on a

DEMONSTRATION. Si p est admissible pour f(I"), on note o = (po f)L;. Comme Ly est
un gradient supérieur, on a fva > [ Y > 1. Par ailleurs, comme f est différentiable
presque partout, on a Ly = |D f| presque partout. Du coup

/0” = /(pOf)”|Df|” < Ko /(pOf)"Jacf < Ko/p”~
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7.4. Du local au global

Dans cette partie, on exploite les propriétés géométriques des condensateurs qui découlent
d’estimées sur leurs capacités. Le point de départ est le fait établi par C.Loewner que
la capacité d’un condensateur non dégénéré de R", n > 2, est toujours non nulle [Loe].

Cette propriété implique ce que 1'on appelle la condition de Loewner, cf. [HK] :

CONDITION DE LOEWNER. Il existe une fonction décroissante ¢ : Ry — R, telle que,
pour chaque condensateur (E, F') de S*, n > 2, on a

mod,,(E, F) > ¢(A(E, F))
ou A(E, F) désigne la distance relative entre E et F' définie par la formule

dist(E, F)
min{diam F, diam F'} -

A(B,F) =

EXERCICE 7.29. — Soitn un homéomorphisme de R . Montrer qu’il existe deux homéomorphismes
ne de Ry tels que, pour tout homéomorphisme n-quasimobius f et tout condensateur
(E,F), on a

n-(A(E, F)) < A(f(E), [(F)) < (A(E, F)) .

REMARQUE 7.30. — J. Heinonen et P. Koskela ont développé une théorie des homéomorphismes
quasiconformes dans certains espaces métriques mesurés, qualifiés de Loewner, basés sur
cette condition [HK].

PROPOSITION 7.31. — Une transformation analytiquement quasiconforme ou une trans-

formation géométriquement quasiconforme est quasimaobius quantitativement.

DEMONSTRATION. Il suffit de montrer que si le birapport de 'image de quatre points est
petit, alors c¢’était le cas des quatre points —quantitativement. Supposons donc [f(z;)] <
e. On peut construire un condensateur (E,F) avec E qui contient {zy,x2} et F qui
contient {x3, x4} tel que A(f(E), f(F)) > M est grand. On a donc avec la condition de
Loewner et la proposition 7.27 dans le premier cas, ou sa définition dans le second,

Y(A(E,F)) < mod,(E, F) $ mody(f(B), f(F)) $log (1 + A(f(E), f(F)))

ce qui montre que A(E, F') est grand, impliquant la petitesse de [z,], o la derniere estimée

s’obtient en testant le module sur p(z) = 1/d(e, x), e € f(E). ]
COROLLAIRE 7.32. — Un homéomorphisme analytiquement quasiconforme est géométriquement
quasiconforme.

DEMONSTRATION. En effet, sachant que f est quasimobius, c’est aussi le cas de son
inverse. En appliquant ce qui précede a l'inverse, on obtient ’autre inégalité par la pro-
position 7.27. [ |
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Absolue continuité.— On montre enfin ’absolue continuité des homéomorphismes

quasiconformes. On utilise implicitement la condition de Loewner.

THEOREME 7.33. — Soit f : S" — X, n > 2, un homéomorphisme quasisymétrique ou
X est n-réqulier, alors f est absolument continu.

DEMONSTRATION. Soit E un ensemble borélien de S™. On recouvre E par des boules
(B;); qui vérifient les conclusions du lemme 7.20.

Considérons le plus grand cube @ = [—1/4/n,1/4/n]™ inscrit dans la boule unité. Le
module des courbes qui joignent deux opposés {—1/y/n} x[—1/y/n,1/y/n]" et {1/y/n} x
[—1y/n,1/y/n]""t est strictement positif. En effet, considérons les segments

Yo = [=1/vn,1/v/n] x {z}, x € {0} x [=1//n,1/y/n]""".

Si p € L™(Q), alors le théoréeme de Fubini montre que pour presque tout z € {0} X
[—1/v/n,1/y/n]""! on a f% p < o0, donc le module est strictement positif d’apres la
proposition 7.8. Du coup, il existe, pour chaque j, une courbe ~; : [0,1] — (1/3)B; telle
que diam~y; > [7;(1) —7;(0)] 2 diam B; et

/gf 5/ [ -
¥ (1/3)B;

J

Pour établir ce fait, il suffit de tester le module avec p = gy qui est admissible par

/n presque partout par le théoreme de

la proposition 7.26, en remarquant que gy = ,u}
différentiation de Lebesgue.
Par quasisymétrie, on a | f(v;(1)) — f(v;(0))] 2 diam f(B;). De plus, comme g; est un

gradient supérieur, on a aussi

£050) = £ < [ 9

Vi
de sorte que
diam fB) S [y,
(1/3)B;

En utilisant le fait que ces boules sont deux a deux disjointes, il vient

(B < Y damf By S Y0 [ s [ s

J

Donc py (f(E)) < [5 1s- -

REMARQUE 7.34. — Les transformations quasisymétriques f : R — R ne sont pas abso-
lument continues en général. En effet, si p est doublante sur R et étrangere a la mesure
de Lebesgue, alors f(x) = sg(z)u([0, z]) est quasisymétrique et non absolument continue.
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7.5. Convergence des homéomorphismes quasiconformes
L’énoncé le plus efficace concerne les homéomorphismes quasisymétriques.

THEOREME 7.35. — Soient (X, xg), (Y,y0), deuz espaces métriques propres marqués, JF
la famille d’applications quasiymétriques f : X — Y telles que f(xo) = yo et telles qu’il
existe un point xy # xo et une constante M < oo tels que, pour tout f € F, on ait
(1/M) < |f(xo) — f(z()| < M. Alors F est une famille compacte.

DEMONSTRATION. Soit x € X. Quitte a échanger les roles de z et x{, on peut supposer
que |z — x| > (1/2)|xo — ]. Soit ' € X. On a

F() - J(&) Sn('x ||>|f(fco) f()]

|z
|z — 2| |z — o )
<n (m) n (m) | f(zo) — f(x0)|

2l — o’ -z
<n(f =) (=)
0 0 0 0
donc F est uniformément équicontinue sur toute boule bornée B(zo, R).

Par un procédé diagonale et le théoreme d’Ascoli, on peut montrer que de toute suite,
on peut extraire une sous-suite convergente vers une application continue f non constante.
Il vient par passage a la limite que f est aussi n-quasisymétrique, et injective. [ |

Si on considere une suite d’homéomorphismes uniformément quasiconformes, alors c¢’est
une suite uniformément quasimobius. Ou bien I'image de trois points distincts restent
séparés sous la suite, ou bien la suite sera une suite de convergence a extraction d’une
sous-suite pres (propriété de convergence). Dans le premier cas, la suite est uniformément
quasisymétrique, donc relativement compacte.

On montre un cas particulier du théoreme 5.14.

THEOREME 7.36 (Tukia [Tuk, Lemma B2]). — Soit (S" LN S™)k une suite d’homéomorphismes
K -quasiconformes qui tend vers un homéomorphisme f : S™ — S™. Si, pour K' > 1 et

tout € > 0, on a
klim H{z eS", Kp(x)> K +¢e}|=0
—00

alors [ est K'-quasiconforme. En particulier, [ est K-quasiconforme.

DEMONSTRATION. Une telle suite est uniformément quasimobius. Comme elle est conver-
gente vers un homéomorphisme, celui-ci est aussi quasimobius, donc quasiconforme. Pour
tout condensateur (£, F'), et py admissible pour f(E, F), on pose oi(z) = (prof(z))Ls(x).
On a pour v € I'(E, F) rectifiable

/Uk—/pk Lfd8>/ pk21
7)



RIGIDITE DE MoSTOW-15
Notons Ay = {Ky, (x) > K'+¢e} et By =S"\ A;. On a
[ot < [ eonripasr+ [ uosyipasy
Ak By,

< K [ (pro f)"Jac(fx)+ (K" + 6)/ (px o f)" Jac(fr)

A By
< K pZ+(K’+6)/ Pk
fr(Ag) fr(Br)
On déduit des hypotheses que mod,,(f(F, F')) < K'mod, (E, F'). Cela suffit & montrer que
f est K'-quasiconforme. [

7.6. Théoréme de Liouville

Cette partie est consacrée a la démonstration du théoreme de Liouville suivant P. Tukia

et J. Véisala [TV].

THEOREME 7.37 (de Liouville). — Une transformation 1-quasiconforme de S™, n > 2,

est une transformation de Mobius.
On globalise le contexte.

PROPOSITION 7.38. — L’ensemble F des transformations 1-quasiconformes de R"™ telles
que f(0) =0 et f(e1) = ey est un groupe compact.

DEMONSTRATION. Sachant que I'inverse d’un homéomorphisme quasiconforme ’est aussi,
on sait que F est stable par passage a I'inverse. De méme pour la composition. Comme ce
sont des transformations uniformément quasimobius normalisées par trois points, JF est

compact et toute limite sera aussi 1-quasiconforme d’apres le théoreme 7.36. [ |

Nous pouvons maintenant démontrer le théoreme de Liouville :

DEMONSTRATION DU THEOREME 7.37. D’apres le théoréme 3.15, il suffit de montrer que
ces applications préservent les spheres.

Notons B = B(0,1) et F' C F le semi-groupe des transformations 1-quasiconformes g
telles que g(B) D B. Pour tout homéomorphisme 1-quasiconforme f, pour tout x € R" et
tout r €10, 7[, il existe des transformations de Mobius ¢y et ¢y telles que 1 (B) = B(z,r)
et (pao0 foyr) e F'.

11 suffit donc de montrer que f(B) = B pour tout f € F'. On procede par 1'absurde.
Puisque F est compact (proposition 7.38), F’ I'est aussi. Donc il existe h € F' telle que

Mh(B)) = sup A(f(B))
feF
ol A désigne la mesure de Lebesgue.
Si A(h(B)) > A(B), alors B est un sous-ensemble strict de h(B), par conséquent h(B)
est aussi un sous-ensemble strict de (h o h)(B). Mais alors,

A((h o h)(B)) > A(h(B)),
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ce qui contredit la définition de h puisque (ho h) € F'. ]
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