
7. GÉOMÉTRIE QUASICONFORME

L’objet de ce chapitre est de fournir quelques pistes qui justifient les allégations du

paragraphe 5.2. Cela concerne en particulier le fait qu’un homéomorphisme quasiconforme

est quasimöbius, ainsi que leurs propriétés analytiques. On propose de s’approcher de ce

problème en utilisant la notion de module de familles de courbes.

Certaines propriétés sont valables dans les espaces métriques mesurés. Dans un espace

métrique, on écrira la distance entre deux points x et y en notation polonaise |x� y|. Si
B = (xB, rB) est une boule et � > 0, alors �B désigne la boule concentrique B(xB,�rB)

de rayon multiplié par �.

Un espace métrique mesuré (X,µ) est dit Q-Ahlfors régulier si µ est une mesure de

Radon, et si, pour tout R 2 [0, diamX] et tout x 2 X, on a µ(B(x,R)) ⇣ RQ.

7.1. Modules de courbes

Un principe de L.Ahlfors et A.Beurling exprime que tout invariant conforme est une

fonction du module d’une famille de courbes bien choisies. Nous en verrons plusieurs

illustrations.

Courbes rectifiables.— On peut consulter [Väi1, Chap. 1] dans le contexte euclidien.

Les arguments dans les espaces métriques sont des adaptations sans malice.

Une courbe � dans (X, d) est une application continue d’un intervalle compact I de R

dans X. On peut, comme dans les espaces euclidiens, définir la longueur de � par

`(�) = sup
X

0j<n

d(�(tj), �(tj+1))

où le supremum est pris sur toutes les subdivisions (tj)0jn de I telles que [t0, tn] = I.

Si cette longueur `(�) est finie, on dira que la courbe est rectifiable. On définit alors la

fonction longueur, croissante, s� : I ! [0, `(�)] par s�(t) = `(�|[a,t]). Pour tout sous-

intervalle [a, b] ⇢ I, on a `(�|[a,b]) = s�(b)� s�(a).

Parmi les courbes rectifiables, on privilégie les paramétrages absolument continus pour

lesquels le calcul di↵érentiel est performant.

Définition 7.1. — Soient a < b deux réels (finis). On dit qu’une application f : [a, b] !
X est absolument continue (AC) si, pour tout " > 0, il existe � > 0 tel que pour tout

a  a1 < b1  a2 < b2 < ... < bn  b tel que
P

|bi � ai| < �, on ait
P

d(f(bi), f(ai)) < ".

On a la caractérisation fondamentale sur R suivante.

Proposition 7.2. — Une application f : [a, b] ! R est absolument continue si et seule-

ment si il existe h 2 L1(a, b) telle que

f(x) = f(a) +

Z x

a

h(t)dt .
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En ce cas, f est dérivable presque partout, et sa dérivée cöıncide avec h. De plus, les for-

mules de changement de variables et d’intégration par parties sont vraies pour les fonctions

AC.

On en déduit, pour une courbe � : I ! X rectifiable, `(�) �
R
I s

0
� avec égalité si et

seulement si � est AC.

Proposition 7.3. — Soit � : I ! X rectifiable, alors il existe un chemin 1-lipschitzien

�s : [0, `(�)] ! X tel que � = �s � s�.

Dans ce cas, on dit que � est paramétrée par longueur d’arc �s : [0, `(�)] ! X.

Proposition 7.4. — Soit � : I ! X une courbe rectifiable. On a

lim
h!0

d(�s(t+ h), �s(t� h))

2|h| = 1 et lim
h!0

d(�(t+ h), �(t� h))

2|h| = s0�(t)

presque partout sur leurs ensembles de définition.

Pour toute fonction borélienne ⇢ : X ! [0,1], on définit
Z

�

⇢ds =

Z `(�)

0

⇢ � �s(t)dt.

Définition 7.5 (Module de familles de courbes). — Soient (X,µ) un espace métrique

mesuré, � une famille de courbes de X et p � 1 un réel. On définit le p-module de � par

modp� = inf

Z

X

⇢pdµ

où l’infimum est pris sur toutes les métriques (dites admissibles) ⇢ : X ! [0,1] telles

que, pour toute courbe rectifiable � 2 �,
R
� ⇢ds � 1.

Il su�t en général de se restreindre aux familles de courbes suivantes.

Définition 7.6 (Condensateurs et capacités). — Si X est un espace métrique, un conden-

sateur est défini par une paire de continua disjoints {E,F}. On note �(E,F ) la famille

des courbes qui joignent E et F . On définit la p-capacité du condensateur par

capp(E,F ) = modp(E,F ) = modp�(E,F ) .

Donnons quelques propriétés élémentaires du module.

Proposition 7.7. — On a les propriétés suivantes :

(1) modp(;) = 0 ;

(2) si �1 ⇢ �2, modp�1  modp�2 ;

(3) si �1 et �2 sont deux familles de courbes telles que toute courbe �1 dans �1 possède

une sous-courbe �2 2 �2, alors modp�1  modp�2.

(4) Si (�n)n est une suite de familles de courbes, alors modp([�n) 
P

modp(�n).
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(5) Si � n’a pas de courbes rectifiables et si chaque courbe est dans une boule fixée (de

rayon bornée), alors modp� = 0.

Les modules modp définissent donc une famille de mesures extérieures sur les familles

de courbes. D’après ci-dessus, le module d’une famille de courbes ne dépend que de ses

courbes rectifiables, et si �0 ⇢ � est de module nul, alors modp� = modp(� \ �0).

On note �rect la famille des courbes rectifiables deX. Il vient modp(�) = modp(�\�rect).

Proposition 7.8. — On a modp� = 0 si et seulement si il existe ⇢ 2 Lp telle queR
� ⇢ = 1 pour toute courbe � 2 �.

On dira qu’une propriété est vraie pour p-presque toute courbe si elle n’est pas vérifiée

sur une famille de courbes de p-module nul.

Lemme 7.9 (Fuglede). — Soit � une famille de courbes. Si (⇢n) est une suite de métriques

admissibles qui converge dans Lp vers ⇢, alors
Z

�

⇢ � 1

pour p-presque toute courbe.

On motive cette notion de modules en montrant que c’est un invariant conforme :

Proposition 7.10. — Soit f : M ! M 0 un di↵éomorphisme conforme entre deux

variétés riemanniennes de dimension n > 1. Si � est une famille de courbes sur M

et f(�) désigne la famille {f(�), � 2 �}, alors

modn� = modnf(�) .

Démonstration. Si � est une métrique admissible pour f(�), on définit

⇢ = (� � f) · |Df | .

On obtient par changement de variables et du fait que le jacobien d’une transformation

conforme est la puissance n-ième de la norme de sa dérivée :

modn� 
Z

M

⇢n =

Z

M 0
�n

donc modn�  modnf(�) et on conclut par symétrie.

7.2. Applications quasiconformes et variantes

On peut consulter [Väi1, Hei, HK, Väi2]. On définit plusieurs classes d’homéomorphismes

basées sur un assouplissement des propriétés des transformations conformes.

Soit f : Sn ! S
n un homéomorphisme.

Etant donné un homéomorphisme ⌘ : R+ ! R+, on dit que f est ⌘-quasisymétrique si

pour tous x, y, z tels que d(x, y)  td(x, z), on ait d(fx, fy)  ⌘(t)d(fx, fz).
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L’homéomorphisme f est ✓-quasimöbius s’il existe un homéomorphisme ✓ : R+ ! R+

tel que, pour tout a, b, c, d 2 X deux à deux disjoints, on a

|f(a)� f(b)|
|f(a)� f(c)| ·

|f(b)� f(d)|
|f(c)� f(d)|  ✓

✓
|a� b|
|a� c| ·

|c� d|
|b� d|

◆
.

Remarque 7.11. — Soit X un espace métrique. Si x1, x2, x3, x4 sont quatre points dis-

tincts de X, on définit

hx1, x2, x3, x4i =
min{|x1 � x2|, |x3 � x4|}
min{|x1 � x3|, |x2 � x4|}

.

Alors

hx1, x2, x3, x4i  ⌘0([x1, x2, x3, x4]) et [x1, x2, x3, x4]  ⌘1(hx1, x2, x3, x4i)

où

⌘0(t) = t+
p
t2 + t and ⌘1(t) = t(2 + t) .

Cela signifie que l’on peut remplacer le birapport par cette nouvelle notion quantitative-

ment, a priori plus intuitive.

Notons

Lf (x, r) = sup
|x�y|r

|f(x)� f(y)| ,

`f (x, r) = inf
|x�y|�r

|f(x)� f(y)| .

On dit que f est métriquement quasiconforme s’il existe une constante H telle que,

pour tout x 2 X,

Hf (x)
def.
= lim sup

r!0

Lf (x, r)

`f (x, r)
 H .

L’homéomorphisme f est géométriquement quasiconforme s’il existe une constante K

telle que, pour toute famille de courbes � de X,

1

K
modn�  modnf(�)  Kmodn� .

L’homéomorphisme f est analytiquement quasiconforme si f 2 W 1,n et s’il existe une

constante KO telle que |Dxf |n  KO|detDxf | pp., où Dxf désigne la matrice jacobienne

que l’on suppose inversible pp.

Théorème 7.12. — Soit f : Sn ! S
n un homéomorphisme. Les propriétés suivantes sont

équivalentes.

(1) f est quasisymétrique,

(2) f est quasimöbius,

(3) f est géométriquement quasiconforme,

(4) f est métriquement quasiconforme,

(5) f est analytiquement quasiconforme.
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Si l’une de ces propriétés est satisfaite, alors f est absolument continu et absolument

continu sur n-presque toute courbe.

La remarque 7.11 permet de montrer que si f est ⌘-quasisymétrique alors f est ✓-

quasimöbius, où ✓ ne dépend que de ⌘. Réciproquement, un homéomorphisme ✓-quasimöbius

est localement ⌘-quasisymétrique où ⌘ ne dépend que de ✓, donc est métriquement ⌘(1)-

quasiconforme. En revanche, le contrôle global de ⌘ ne dépend pas que de ✓, mais aussi

de l’image de trois points distincts.

Le reste du chapitre vise à justifier les autres propriétés. On étudie ensuite les suites

d’homéomorphismes quasiconformes et on montre une version du théorème de Liouville.

7.3. Absolue continuité sur presque toute courbe des homéomorphismes

quasiconformes

On suit [BKR].

Espaces de Sobolev.— Nous allons présenter les espaces de Sobolev basés sur la notion

de gradient supérieur selon N. Shanmugalingam [Sha].

Définition 7.13. — Soient U ⇢ X un ouvert et f : U ! Y une application mesurable

entre espaces métriques. Un gradient supérieur g de f est une application mesurable g :

U ! R+ telle que, pour toute courbe rectifiable � : [0, 1] ! U , on ait

d(f(�(1)), f(�(0)) 
Z

�

g .

Exercice 7.14. — Soient � : I ! X une courbe rectifiable et f : X ! Y une application

entre espaces métriques muni d’un gradient supérieur g. L’application f��s est absolument

continue pour toute courbe � telle que g � �s est intégrable.

On dit que f |� est absolument continue si � est rectifiable et f � �s est absolument

continue.

On parlera de gradient supérieur p-faible si g 2 Lp
loc(U) et si l’inégalité ci-dessus est

valide pour p-presque toute courbe. Notons que si g est un gradient p-faible, alors la

proposition 7.8 nous construit une suite de gradients supérieurs (gn) qui converge dans

Lp vers g par convergence dominée.

Exemple.—- La fonction

Lf (x) = lim sup
r!0

1

r
sup{d(f(x), f(y)), d(x, y)  r}

est borélienne. C’est un gradient supérieur si f |� est AC pour toute courbe rectifiable

�. En e↵et, on suppose que � est paramétrée par longueur d’arc. Si f |� est absolument
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continue, alors l’application sf�� : t 7! `(f � �([0, t])) est AC, donc il existe h� mesurable

telle que, pour tout intervalle [a, b] ⇢ [0, `(�)], on ait

`(f � �([a, b]))) =
Z b

a

h� .

Or d(f(�(t�s)), f(�(t+s)))  2Lf (�(t), s) donc le théorème de di↵érentiation de Lebesgue

et la proposition 7.4 impliquent h�  Lf presque partout.

Remarque.— Si u 2 C1(Rn), alors |ru| est un gradient supérieur de u.

Fait 7.15. — Soient U ⇢ X un ouvert, u : U ! Y une application mesurable entre es-

paces métriques et g un gradient supérieur de u. Pour toute courbe � : I ! X paramétrée

par longueur d’arc, on a g � � � s0u�� presque partout.

Démonstration. On suppose � et u � � rectifiables. On a donc
Z t+h

t�h

g � � � d(u � �(t+ h), u � �(t� h))

donc la proposition 7.4 et le théorème de di↵érentiation de Lebesgue impliquent g�� � s0u��
presque partout.

Définition 7.16 (Espaces de Sobolev). — Soient (X, x0, µ) un espace mesuré pointé

et Y un espace métrique. L’espace de Sobolev W 1,p(X, Y ) est l’ensemble des fonctions

mesurables f : X ! Y qui admettent un gradient supérieur p-faible et telles que la

fonction u : x 7! dY (f(x), f(x0)) soit Lp-intégrable.

Théorème 7.17 (N. Shanmugalingam [Sha, Th. 4.5]). — Si ⌦ est un domaine de R
n,

alors la définition classique et celle ci-dessus des espaces de Sobolev W 1,p(⌦) cöıncident.

Exercice 7.18. — Montrer que si f 2 W 1,p
loc (X, Y ), alors f est absolument continue sur

p-presque toute courbe.

Théorème 7.19. — Un homéomorphisme quasiconforme f : X ! Y entre espaces

métriques Q-Ahlfors-réguliers appartient à W 1,Q
loc (X, Y ).

Nous commençons par un lemme de recouvrement et en tirons des conséquences.

Lemme 7.20. — Soit X un espace métrique précompact et B une collection de boules

fermées B(x, r(x)) centrées en chaque point de X et de rayon uniformément borné. Alors

il existe une famille finie ou dénombrable de boules Bj = B(xj, rj) 2 B recouvrant X avec

les propriétés suivantes.

(1) On a B(xi, ri/3) \ B(xj, rj/3) = ; dès que i 6= j.

(2) Si i 6= j, alors ou bien xi /2 Bj et Bj \Bi 6= ;, ou bien xj /2 Bi et Bi \Bj 6= ;.
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Lemme 7.21. — Soit f : X ! Y un homéomorphisme où X et Y sont des espaces

métriques avec X précompact. Soit B une famille de boules vérifiant les conclusions du

lemme 7.20 et tel que, pour chaque B(x, r(x)) 2 B, Lf (x, r(x))  H`f (x, r(x)). Alors

B

✓
f(x),

diam f(B)

60H2

◆
\B

✓
f(x0),

diam f(B0)

60H2

◆
= ;

pour toutes boules B = B(x, r(x)) et B0 = B(x0, r(x0)) dans B avec x 6= x0.

Démonstration. — On utilisera l’observation

B(f(x), (1/3)d(f(x), f(x0))) \B(f(x0), (1/3)d(f(x), f(x0))) = ;

obtenue par l’inégalité triangulaire. On peut supposer x0 /2 B. Puisque

B

✓
f(x),

diam f(B)

2H

◆
⇢ f(B)

on a

(8) |f(x0)� f(x)| � diam f(B)

2H

Si on a aussi

|f(x0)� f(x)| > diam f(B0)

3H
,

alors on a

B

✓
f(x),

diam f(B)

10H

◆
\B

✓
f(x0),

diam f(B0)

10H

◆
= ; .

Sinon, prenons z 2 B \B0 ; il vient

|f(z)� f(x)|+ |f(x)� f(x0)| � |f(z)� f(x0)| � diam f(B0)

2H

de sorte que

diam f(B) +
diam f(B0)

3H
� diam f(B0)

2H
.

Par conséquent

(9) diam f(B) � diam f(B0)

6H
.

Par (8) et (9), on obtient

|f(x)� f(x0)| � diam f(B)

2H
� diam f(B0)

12H2
.

Donc on a

B

✓
f(x),

diam f(B)

60H2

◆
\B

✓
f(x0),

diam f(B0)

60H2

◆
= ; .

⇤

Nous utiliserons dans la suite le lemme suivant dû à J. Strömberg et A.Torchinsky [ST]

dans l’espace euclidien :
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Lemme 7.22. — Soit B une famille de boules dans un espace Ahlfors-régulier X. On

associe à chaque boule B un réel aB > 0. Soit � > 1 et p � 1. Il existe une constante

C > 0 telle que �����
X

B2B

aB��B

�����
Lp

 C ·

�����
X

B2B

aB�B

�����
Lp

.

Démonstration du théorème 7.19. Il su�t de trouver, dans chaque boule fermée de

rayon finie bB, une fonction borélienne ⇢ 2 LQ( bB) telle que

|f(�(0))� f(�(1))| 
Z

�

⇢

pour Q-presque toute courbe � : [0, 1] ! bB.

Pour chaque n � 1, on note �n la famille de courbes � dans bB telles que diam � > (1/n).

On construit une suite de gradients supérieurs à l’échelle 1/n, dont une limite produira

un gradient supérieur qui sera LQ-intégrable.

Si x 2 bB, on considère un rayon rx 2]0, 1/2n[ tel que Lf (x, rx)  2H`f (x, rx).

On applique le lemme 7.20 aux boules {B(x, rx)} et on désigne par B = B(n) le nouveau
recouvrement de bB.

Posons

⇢n = 2
X

B

Lf (xi, ri)

ri
�2Bi .

Si � 2 �n, alorsZ

�

⇢n � 2
X

Bi\� 6=;

Lf (xi, ri) �
X

diam f(Bi) � |f(�(1))� f(�(0))|

puisque {f(Bi)} recouvre f(�).

Le lemme 7.22 implique
Z
⇢Qn .

Z X Lf (xi, ri)Q

rQi
�(1/3)Bi .

Il vient de la régularité de X que
Z
⇢Qn .

X

B2B

Lf (xi, ri)
Q .

Mais

Lf (xi, ri)
Q ⇣ µY (B(f(xi), diamB(f(xi), Lf (xi, ri)/120H

2)))

et puisque ces boules sont deux à deux disjointes, on peut conclure
Z
⇢Qn . µY (f((1 + 1/n) bB)) < 1 .

Nous avons prouvé que, pour chaque n � 1, pour toute courbe � 2 �n, on a
R
� ⇢n �

|f(�(1))� f(�(0))|. De plus, il existe une constante M < 1 telle que k⇢nkLQ  M pour

tout n � 1.
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Par le théorème de Banach-Alaoglu, il existe une sous-suite (⇢nk
) qui converge dans la

topologie faible-* de LQ vers une fonction borélienne ⇢. On déduit du lemme de Mazur

que l’on a convergence d’une combinaison convexe (b⇢k) de (⇢nk
) vers ⇢ dans LQ.

Observons que si � 2 �n, alors, pour tout k assez grand,
R
� b⇢k � |f(�(0))� f(�(1))|.

Le lemme 7.9 implique Z

�

⇢ � |f(�(0))� f(�(1))|

pour Q-presque toute courbe de [�n.

Si f : (X,µ) ! (Y, ⌫) est un homéomorphisme entre espaces mesurés, on peut définir la

mesure f ⇤⌫ surX en posant (f ⇤⌫)(A) = ⌫(f(A)). D’après le théorème de Radon-Nikodym,

il existe ⌫a ⌧ µ et ⌫s ? µ telles que f ⇤⌫ = ⌫a + ⌫s.

Définition 7.23 (dérivée volumique). — La dérivée volumique de f est

µf =
d⌫a
dµ

.

On a donc ⌫(f(A)) �
R
A µf pour tout borélien A ⇢ X. Si µ est Ahlfors régulière (plus

généralement une mesure doublante), alors le théorème de di↵érentiation de Lebesgue

implique que pour µ-presque tout x 2 X on a

µf (x) = lim
r!0

⌫(f(B(x, r)))

µ(B(x, r))
.

Si f est absolument continu i.e., si ⌫s = 0, alors

⌫(f(A)) =

Z

A

µf

pour tout borélien A ⇢ X, et on a la formule de changement de variables
Z

Y

'd⌫ =

Z

X

(' � f)µfdµ ,

pour toute fonction borélienne ' 2 L1(⌫).

Corollaire 7.24. — Sous les hypothèses du théorème 7.19 il existe une constante K

telle que

Lf (x)
Q  Kµf (x)

presque partout, où µf est la dérivée volumique de f .

Démonstration. On remarque que

B(f(x), Lf (x, r)/(2H)) ⇢ B(f(x), `f (x, r)) ⇢ f(B(x, r)) .

Donc

Lf (x, r)
Q . µY (f(B(x, r)))

et par le théorème de di↵érentiation de Lebesgue, on en déduit que LQ
f . µf presque

partout.
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Corollaire 7.25. — Si f : Sn ! S
n est métriquement H-quasiconforme, n � 2, alors

f est Hn�1-analytiquement quasiconforme et di↵érentiable presque partout.

Démonstration. Le théorème de Stepano↵ implique qu’une fonction f : Sn ! S
n est

di↵érentiable presque partout sur l’ensemble {Lf < 1}. On déduit donc la di↵érentiabilité

presque partout de f du corollaire 7.24. La di↵érentiabilité en un point x montre alors

que |Dxf |n = Hf (x)n�1|detDxf |.
On définit l’application

gf (x) = H lim sup
r!0

✓
µY (f(B(x, r)))

µX(B(x, r))

◆1/Q

Cette application est clairement borélienne.

Proposition 7.26. — Si f est quasiconforme alors il existe une constante C > 0 telle

que l’application Cgf soit un gradient supérieur Q-faible associé à f .

Démonstration. Comme f 2 W 1,Q
loc (X, Y ), f est AC sur Q-presque toute courbe. On

peut donc supposer que � : [0, L] ! X est un chemin rectifiable paramétré par longueur

d’arc et que f |� est AC.

Pour tout z 2 �, il existe rz > 0 arbitrairement petit tel que

f(B(z, rz)) ⇢ B(f(z), Lf (z, rz)) ⇢ B(f(z), 2H`f (z, rz)) .

Du coup, si �(t) = z alors

diam (f � �)(]t� rz, t+ rz[)  4H`f (z, rz)) . HµY (f(B(z, rz)))
1/Q .

Soit " > 0 ; pour j 2 Z, on considère

Ej = {t 2 ]0, L[, 2j�1 < gf (�(t))  2j}.

Pour t 2 Ej, on peut trouver rz assez petit pour que

µY (f(B(z, rz)))1/Q

rz
. gf (z) ,

donc diam (f � �)(]t� rz, t+ rz[) . 2jrz .

Soit Uj � Ej un ouvert tel que `(Uj)  `(Ej) + "/22|j|. On peut s’arranger pour que

]t�rz, t+rz[⇢ Uj pour chaque t 2 Ej. On extrait un sous-recouvrement (Ii,j) par le lemme

7.20 ; on peut même s’arranger pour qu’un point x n’appartienne au plus qu’à deux tels

intervalles. On obtient
X

i

diam f(�(Ii,j)) . 2j
X

i

rzi

. 2j`(Uj)

. 2j`(Ej) + "/2|j|

.
Z

�|Ej

gf + "/2|j| .
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Soit F les points pour lesquels gf � � = 0. On montre que `(f(F )) = 0 en utilisant les

estimations ci-dessus. Soit G les points pour lesquels gf � � est infini. Si `(G) > 0, alors

on a bien l’inégalité recherchée. Sinon, `(G) = 0 et par continuité absolue, on a aussi

`(f(G)) = 0.

Comme (Ii,j)i,j recouvre [0, L] a un ensemble nul près, il vient en rassemblant nos

di↵érentes estimées

|f(�(1))� f(�(0))| .
Z

�

gf .

Proposition 7.27. — Soit f : X ! Y un homéomorphisme quasiconforme entre deux

espaces métriques propres Q-Ahlfors réguliers, alors

modQ� . modQf(�).

Démonstration. Si � est admissible pour f(�), on pose

⇢ = � � f · gf .

Comme f est absolument continue sur presque toute courbe, il su�t de considérer � 2 �

paramétrée par longueur d’arc telle que f � � est absolument continue. On rappelle que,

comme gf est un gradient supérieur, on a gf �� � s0f�� presque partout. Notons f �� = ��s
où � est un paramétrage par longueur d’arc et s la fonction longueur de f � �. Du coup,

on a
Z

�

⇢ =

Z

�

� � f · gf =

Z
(� � � � s)(gf � �) �

Z
(� � �) � s · s0 =

Z

f��
� � 1

car s est absolument continu. Par ailleurs,

Z
⇢Q =

Z
(� � f)QgQf ⇣

Z
(� � f)Qµf 

Z
�Q.

Corollaire 7.28. — Si f : Sn ! S
n, n � 2, est analytiquement KO-quasiconforme,

alors modn�  KOmodnf(�).

Démonstration. Si ⇢ est admissible pour f(�), on note � = (⇢ � f)Lf . Comme Lf est

un gradient supérieur, on a
R
� � �

R
f(�) ⇢ � 1. Par ailleurs, comme f est di↵érentiable

presque partout, on a Lf = |Df | presque partout. Du coup
Z
�n =

Z
(⇢ � f)n|Df |n  KO

Z
(⇢ � f)nJacf  KO

Z
⇢n .
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7.4. Du local au global

Dans cette partie, on exploite les propriétés géométriques des condensateurs qui découlent

d’estimées sur leurs capacités. Le point de départ est le fait établi par C. Loewner que

la capacité d’un condensateur non dégénéré de R
n, n � 2, est toujours non nulle [Loe].

Cette propriété implique ce que l’on appelle la condition de Loewner, cf. [HK] :

Condition de Loewner. Il existe une fonction décroissante  : R+ ! R+ telle que,

pour chaque condensateur (E,F ) de S
n, n � 2, on a

modn(E,F ) �  (�(E,F ))

où �(E,F ) désigne la distance relative entre E et F définie par la formule

�(E,F ) =
dist(E,F )

min{diamE, diamF} .

Exercice 7.29. — Soit ⌘ un homéomorphisme de R+. Montrer qu’il existe deux homéomorphismes

⌘± de R+ tels que, pour tout homéomorphisme ⌘-quasimöbius f et tout condensateur

(E,F ), on a

⌘�(�(E,F ))  �(f(E), f(F ))  ⌘+(�(E,F )) .

Remarque 7.30. — J.Heinonen et P.Koskela ont développé une théorie des homéomorphismes

quasiconformes dans certains espaces métriques mesurés, qualifiés de Loewner, basés sur

cette condition [HK].

Proposition 7.31. — Une transformation analytiquement quasiconforme ou une trans-

formation géométriquement quasiconforme est quasimöbius quantitativement.

Démonstration. Il su�t de montrer que si le birapport de l’image de quatre points est

petit, alors c’était le cas des quatre points —quantitativement. Supposons donc [f(xj)] 
". On peut construire un condensateur (E,F ) avec E qui contient {x1, x2} et F qui

contient {x3, x4} tel que �(f(E), f(F )) � M est grand. On a donc avec la condition de

Loewner et la proposition 7.27 dans le premier cas, ou sa définition dans le second,

 (�(E,F ))  modn(E,F ) . modn(f(E), f(F )) . log1�n(1 +�(f(E), f(F )))

ce qui montre que�(E,F ) est grand, impliquant la petitesse de [xj], où la dernière estimée

s’obtient en testant le module sur ⇢(x) = 1/d(e, x), e 2 f(E).

Corollaire 7.32. — Un homéomorphisme analytiquement quasiconforme est géométriquement

quasiconforme.

Démonstration. En e↵et, sachant que f est quasimöbius, c’est aussi le cas de son

inverse. En appliquant ce qui précède à l’inverse, on obtient l’autre inégalité par la pro-

position 7.27.
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Absolue continuité.—- On montre enfin l’absolue continuité des homéomorphismes

quasiconformes. On utilise implicitement la condition de Loewner.

Théorème 7.33. — Soit f : Sn ! X, n � 2, un homéomorphisme quasisymétrique où

X est n-régulier, alors f est absolument continu.

Démonstration. Soit E un ensemble borélien de S
n. On recouvre E par des boules

(Bj)j qui vérifient les conclusions du lemme 7.20.

Considérons le plus grand cube Q = [�1/
p
n, 1/

p
n]n inscrit dans la boule unité. Le

module des courbes qui joignent deux opposés {�1/
p
n}⇥[�1/

p
n, 1/

p
n]n�1 et {1/

p
n}⇥

[�1
p
n, 1/

p
n]n�1 est strictement positif. En e↵et, considérons les segments

�x = [�1/
p
n, 1/

p
n]⇥ {x}, x 2 {0}⇥ [�1/

p
n, 1/

p
n]n�1 .

Si ⇢ 2 Ln(Q), alors le théorème de Fubini montre que pour presque tout x 2 {0} ⇥
[�1/

p
n, 1/

p
n]n�1, on a

R
�x
⇢ < 1, donc le module est strictement positif d’après la

proposition 7.8. Du coup, il existe, pour chaque j, une courbe �j : [0, 1] ! (1/3)Bj telle

que diam �j � |�j(1)� �j(0)| & diamBj et
 Z

�j

gf

!n

.
Z

(1/3)Bj

µf .

Pour établir ce fait, il su�t de tester le module avec ⇢ = gf qui est admissible par

la proposition 7.26, en remarquant que gf = µ1/n
f presque partout par le théorème de

di↵érentiation de Lebesgue.

Par quasisymétrie, on a |f(�j(1))� f(�j(0))| & diam f(Bj). De plus, comme gf est un

gradient supérieur, on a aussi

|f(�j(1))� f(�j(0))| 
Z

�j

gf

de sorte que

diam f(Bj)
n .

Z

(1/3)Bj

µf .

En utilisant le fait que ces boules sont deux à deux disjointes, il vient

µY (f(E)) 
X

diam f(Bj)
n .

XZ

(1/3)Bj

µf .
Z

[Bj

µf .

Donc µY (f(E)) .
R
E µf .

Remarque 7.34. — Les transformations quasisymétriques f : R ! R ne sont pas abso-

lument continues en général. En e↵et, si µ est doublante sur R et étrangère à la mesure

de Lebesgue, alors f(x) = sg(x)µ([0, x]) est quasisymétrique et non absolument continue.
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7.5. Convergence des homéomorphismes quasiconformes

L’énoncé le plus e�cace concerne les homéomorphismes quasisymétriques.

Théorème 7.35. — Soient (X, x0), (Y, y0), deux espaces métriques propres marqués, F
la famille d’applications quasiymétriques f : X ! Y telles que f(x0) = y0 et telles qu’il

existe un point x0
0 6= x0 et une constante M < 1 tels que, pour tout f 2 F , on ait

(1/M)  |f(x0)� f(x0
0)|  M . Alors F est une famille compacte.

Démonstration. Soit x 2 X. Quitte à échanger les rôles de x0 et x0
0, on peut supposer

que |x� x0| � (1/2)|x0 � x0
0|. Soit x0 2 X. On a

|f(x)� f(x0)|  ⌘

✓
|x� x0|
|x� x0|

◆
|f(x0)� f(x)|

 ⌘

✓
|x� x0|
|x� x0|

◆
⌘

✓
|x� x0|
|x0 � x0

0|

◆
|f(x0)� f(x0

0)|

 ⌘

✓
2|x� x0|
|x0

0 � x0|

◆
⌘

✓
|x� x0|
|x0 � x0

0|

◆
M

donc F est uniformément équicontinue sur toute boule bornée B(x0, R).

Par un procédé diagonale et le théorème d’Ascoli, on peut montrer que de toute suite,

on peut extraire une sous-suite convergente vers une application continue f non constante.

Il vient par passage à la limite que f est aussi ⌘-quasisymétrique, et injective.

Si on considère une suite d’homéomorphismes uniformément quasiconformes, alors c’est

une suite uniformément quasimöbius. Ou bien l’image de trois points distincts restent

séparés sous la suite, ou bien la suite sera une suite de convergence à extraction d’une

sous-suite près (propriété de convergence). Dans le premier cas, la suite est uniformément

quasisymétrique, donc relativement compacte.

On montre un cas particulier du théorème 5.14.

Théorème 7.36 (Tukia [Tuk, Lemma B2]). — Soit (Sn fk�! S
n)k une suite d’homéomorphismes

K-quasiconformes qui tend vers un homéomorphisme f : Sn ! S
n. Si, pour K 0 � 1 et

tout " > 0, on a

lim
k!1

|{x 2 S
n, Kfk(x) � K 0 + "}| = 0

alors f est K 0-quasiconforme. En particulier, f est K-quasiconforme.

Démonstration. Une telle suite est uniformément quasimöbius. Comme elle est conver-

gente vers un homéomorphisme, celui-ci est aussi quasimöbius, donc quasiconforme. Pour

tout condensateur (E,F ), et ⇢k admissible pour fk(E,F ), on pose �k(x) = (⇢k�f(x))Lf (x).

On a pour � 2 �(E,F ) rectifiable
Z

�

�k =

Z

�

⇢k(f)Lfds �
Z

f(�)

⇢k � 1 .
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Notons Ak = {Kfk(x) � K 0 + "} et Bk = S
n \ Ak. On a

Z
�n
k 

Z

Ak

(⇢k � f)n|Dxf |n +
Z

Bk

(⇢k � f)n|Dxf |n

 K

Z

Ak

(⇢k � f)nJac(fk) + (K 0 + ")

Z

Bk

(⇢k � f)nJac(fk)

 K

Z

fk(Ak)

⇢nk + (K 0 + ")

Z

fk(Bk)

⇢nk

On déduit des hypothèses que modn(f(E,F ))  K 0modn(E,F ). Cela su�t à montrer que

f est K 0-quasiconforme.

7.6. Théorème de Liouville

Cette partie est consacrée à la démonstration du théorème de Liouville suivant P.Tukia

et J. Väisälä [TV].

Théorème 7.37 (de Liouville). — Une transformation 1-quasiconforme de S
n, n � 2,

est une transformation de Möbius.

On globalise le contexte.

Proposition 7.38. — L’ensemble F des transformations 1-quasiconformes de R
n telles

que f(0) = 0 et f(e1) = e1 est un groupe compact.

Démonstration. Sachant que l’inverse d’un homéomorphisme quasiconforme l’est aussi,

on sait que F est stable par passage à l’inverse. De même pour la composition. Comme ce

sont des transformations uniformément quasimöbius normalisées par trois points, F est

compact et toute limite sera aussi 1-quasiconforme d’après le théorème 7.36.

Nous pouvons maintenant démontrer le théorème de Liouville :

Démonstration du théorème 7.37. D’après le théorème 3.15, il su�t de montrer que

ces applications préservent les sphères.

Notons B = B(0, 1) et F 0 ⇢ F le semi-groupe des transformations 1-quasiconformes g

telles que g(B) � B. Pour tout homéomorphisme 1-quasiconforme f , pour tout x 2 R
n et

tout r 2 ]0, ⇡[, il existe des transformations de Möbius '1 et '2 telles que '1(B) = B(x, r)

et ('2 � f � '1) 2 F 0.

Il su�t donc de montrer que f(B) = B pour tout f 2 F 0. On procède par l’absurde.

Puisque F est compact (proposition 7.38), F 0 l’est aussi. Donc il existe h 2 F 0 telle que

�(h(B)) = sup
f2F 0

�(f(B))

où � désigne la mesure de Lebesgue.

Si �(h(B)) > �(B), alors B est un sous-ensemble strict de h(B), par conséquent h(B)

est aussi un sous-ensemble strict de (h � h)(B). Mais alors,

�((h � h)(B)) > �(h(B)),
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ce qui contredit la définition de h puisque (h � h) 2 F 0.
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