6. LA RIGIDITE DE MOSTOW PAR L’ERGODICITE DU FLOT
GEODESIQUE

6.1. Flot géodésique

On s’appuie sur [Boul, Bou2]. Pour le point de vue riemannien, on renvoie a [GHL,
dC, TF]. Soit (M, g) une variété riemannienne. On se place dans le fibré unitaire tangent
T'M des (x,v) avec z € M, v € T,M de norme 1. Si g est une isométrie, on pose

g- (:L‘7U) = (g($),ng(v))
On définit le flot géodésique

P:RxT'M —T'M
comme suit. A chacun des points (z, v), on associe la géodésique locale v telle que y(0) = x
et 7/(0) = v. On pose, lorsque c’est bien défini,
O(t,x,v) = By(x,v) = (4(1),7'(1)) -
EXERCICE 6.1. — (1) Montrer que &1y = ®; 0 Oy
(2) Montrer que si g est une isométrie, alors ®, 0 g = go ®,.
On considere maintenant H". Notons GH" ’ensemble des géodésiques paramétrées - :

R — H" que 'on munit de la distance

=t

e
daran(1,72) = [ dn(6), () 5t
On définit le flot géodésique sur GH" par ®4(y) = (t — v(s +1)).

EXERCICE 6.2. — Montrer que le groupe d’isométries opére sur GH" par isométries, et

que son action commute avec celle du flot géodésique.

EXERCICE 6.3. — Montrer que si G opeéere proprement discontinument par isométries sur

H", il en est de méme de son action sur GH".

EXERCICE 6.4. — Montrer que lapplication v € GH" — ~(0) € H" est une quasi-

1sométrie.

Paramétrage de Hopf.— Chaque géodésique v dans H" a deux points limites a l'infini
que l'on note y(—00) et y(+00). On se fixe un point base w € H", et on définit

H:GH" - 0*H" x R
par

H(7y) = (7(=00),7(+00), By(+o0) (w,7(0))) -

EXERCICE 6.5. — Montrer que H est un homéomorphisme (il suffit de montrer que H
est continue, bijective et propre).
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Dans cet espace, le flot géodésique devient

(I)t(§7£/75) = (576/7 s+ t) .

6.2. Ergodicité du flot géodésique

Soit 4 une mesure borélienne o-finie sur TH". On dit qu’elle est invariante sous le flot
géodésique si, pour tout borélien A C T*H", pour tout ¢ € R,

p(A) = p(P(A)).

Soit A la mesure de Lebesgue sur S, Si g est une transformation de Mobius de S™*
et F est borélien, alors la formule de changement de variables donne

Ao(E) = [ lgPax.
E
On définit la mesure p sur S*1 x S"~1 ainsi : si £ C S*! x S*~! est borélien, on pose
d\(z) ® dA(y)
HiB) = / PR
B |z —yle

On constate que p est une mesure de Radon sur (S"1 x S\ {(z, z)}.

LEMME 6.6. — La mesure p est invariante sous l'action du groupe de Mobius.

DEMONSTRATION. Soit ¢ une transformation de Mobius. On considere un borélien A x B ;

dA\(z) @ dA(y
T B
9(A)xg(B) |z —yle

_ / g/ ()" g (2)]" " dA(2) @ dA(y)
AxB lg(z) — gy

_ / d\(z) @ dA(y)
AxB | — y|§("_1)

= (A x B)

on a

ou on a utilisé (2). Donc I'action du groupe de Mébius préserve . [

Sur l'espace du flot géodésique GH", on considere la mesure m = H*(du ® dt) via
le paramétrage de Hopf. Cette mesure est une mesure de Radon invariante par le flot
géodésique (car la mesure de Lebesgue est invariante par translations) et par I'action des
isométries de H" (car p est).

On se donne un groupe G qui opére librement et géométriquement sur H". Notons D un
domaine fondamental (relativement compact) de cette action. La restriction de la mesure
m & T'D définit une mesure mg sur GH" /G, invariante par 1’action du flot géodésique et
de masse finie.
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THEOREME 6.7 (E.Hopf [Hopl). — Le flot géodésique est ergodique sur (GH"/G,mg).
Autrement dit, tout ensemble borélien de GH" /G invariant par le flot géodésique est de

mesure nulle, ou son complémentaire [’est.
COROLLAIRE 6.8. — L’action de G sur (0°H", u) est ergodique.

DEMONSTRATION. Si A invariant par G avec p(A) > 0, alors A X R est un ensemble de
mesure positive invariant par G et le flot géodésique. Pour chaque point p = (£, £, t) de
A x R, on peut trouver g € G tel que g(p) € D. En passant au quotient, on obtient un
ensemble de mesure positive et invariant par le flot : son complémentaire est de mesure
nulle d’apres le théoreme de Hopf. Par suite, le complémentaire de A X R est de mesure
nulle, et le complémentaire de A aussi. [ |

On peut consulter [Kai] pour plus de propriétés dans le cadre de la courbure de négative.

6.3. La rigidité de Mostow

Le lemme suivant est dia a D. Sullivan [Sul].

LEMME 6.9. — Si f: S"! — S"! est un homéomorphisme tel que f*u = c- u, olt ¢ > 0
est une constante, alors f est une transformation de Mdbius.

DEMONSTRATION. Soit f une transformation telle que f*u = cu. Cela signifie que f*\
est absolument continue par rapport a A. Il existe une fonction borélienne positive h telle

que d(f*A) = hdA. Du coup,
s~ M) © )

f(x) — fy)l Y

donc, si f*u = c- p, on obtient

clf(@) = F@) Y = hah(y)e -y

presque partout ; mais, en gardant y fixe, on constate que h doit étre continue. Par suite,
si x1, T9, x3 et x4 sont quatre points distincts, alors

2(n—1)
flxy): flxa): fas): flay 2(n=1) _ C’f(.il}l) — f(x2>’2 : C‘f
[f (1)« f(m2) : f(m3) 2 f(4)] e~ Fe g

2(n—1
Flag)2" Y

f

xs3

(23) — (24
(w2) — f(zg)|2" Y

h(x1)h(zs)|m1 — 222" VR

wa) |z — 242"

(z3)h
(

(24) |23 — 22"
x2)h(

)
h(xl)h(x3)|x1 — $3|z(n_1)h

= (2120 @ a2V

donc f est une transformation de Mobius. [
THEOREME 6.10 (G.D. Mostow). — Soient My et My deux variétés compactes hyperbo-

liques de dimension au moins 3. Si leurs groupes fondamentaux sont isomorphes, alors
les variétés sont isométriques.
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Pour 7 = 1,2, on consideére un sous-groupe d’isométries G; tels que H% / G; ~ M;.
Le groupe G opere donc géométriquement sur H%. D’apres le lemme de Svarc-Milnor,
I'espace hyperbolique H% est quasi-isométrique & Porbite d’un point G(w;).

Notons p : G; — G un isomorphisme. On définit ¢ : G1(w1) — Ga(ws) par ¢(g(wy)) =
p(g)(wy). On obtient ainsi une quasi-isométrie équivariante ® : H* — H®. Par conséquent,
le Théoreme 4.22 montre que ¢ se prolonge en un homéomorphisme quasimébius ¢ :
Sh—1 5 §42-1 gquivariant.

On en déduit en particulier que d; = dy = d.

Puisque d > 3, le théoreme 5.9 implique que ¢ est absolument continu. Notons A la
mesure de Lebesgue de S¥! et u la mesure sur 0°H¢ définie par

_ d\(x) @ dA\(y)

yl Y

dpi(z, y)

|z —

Par suite, il existe une fonction intégrable h telle que d(¢*\) = hdA. Donc les mesures

1 et @ sur O°H sont dans la méme classe. Etant ergodiques (théoreme de Hopf), on en
déduit qu’elles sont proportionnelles. Par le lemme 6.27, on conclut que ¢ est de Md6bius.
Comme ¢ est une transformation de Mobius qui commute avec G et Ga, ¢ se prolonge en
une isométrie hyperbolique équivariante par la proposition 3.18, et passe donc au quotient

en une isomeétrie. [

EXERCICE 6.11. — Montrer que st d = 2, alors ou bien ¢ est totalement singulier, ou
bien ¢ est une homographie.

6.4. Espaces CAT(-1)

Nous nous référons ici essentiellement a [BH, GdIH, Boul, Bou2|. Un espace métrique
CAT(-1) est un espace géodésique dont les triangles sont plus fins que leurs homologues
de H?. Un tel espace partage de nombreuses propriétés avec les espaces hyperboliques H,

d > 2, qui s’établissent avec les mémes arguments.

6.4.1. Triangle de comparaison. Soit X un espace métrique géodésique.

Rappelons qu’'un triangle A est la donnée de trois points a, b, c et de trois segments
géodésiques qui les relient deux a deux. On lui associe un triangle de comparaison A =
{@,b,} sur H?, bien défini & isométries pres de H?, dont la longueur des cotés ont méme
longueur que ceux de A. Son existence découle essentiellement de I'inégalité triangulaire.
En effet, si on place @ et b dans H? & distance dx(a,b), et que I'on considere le cercle
centré en a de rayon dx(a,c), alors un point courant z de ce cercle aura sa distance a
b qui variera entre dx(a,b) + dx(a,c) et |dx(a,b) — dx(a,c)|; or cet intervalle contient
dx (b, ¢) par 'inégalité triangulaire donc le théoreme des valeurs intermédiaires nous donne
I'existence de ¢ & distance dx (a, ¢) de @ et dx (b, ¢) de b. On définit aussi I’angle comparaison

Za(b, ) comme étant I'angle correspondant de A (en @).
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On considere enfin application fa : A — A dont la restriction & chaque c6té est une
isométrie et telle que f(a,b,c) = (a,b,c).

DEFINITION 6.12. — (1) On dit que A satisfait le théoréme de comparaison d’Aleksan-

droff si fa est une dilatation.

(2) On dit que X est un espace CAT(-1) si tout triangle de X wvérifie le théoréme de

comparaison d’Aleksandroff.

Les espaces hyperboliques H", n > 2, sont des exemples d’espaces CAT(-1). Plus
généralement, les variétés riemanniennes simplement connexes de courbure sectionnelle

majorée par (—1).

EXERCICE 6.13. — Soit X un espace CAT(-1). Etablir les propriétés suivantes.
(1) Par deuz points passe un unique segment géodésique.

(2) Soit A un triangle hyperbolique. La distance d’un point x auzr deuz cotés opposés est
borné par log(1 + v/2).

(3) Soient 11, ro deuzx rayons géodésiques. Ou bien 11 et ro sont asymptotes et il existe
u € R tel que limy_,o0 dx (r1(t +u),m2(t)) = 0; sinon dx ((ri(t),r2(t)) 2 t.

(4) 1l existe 69 > 0 telle que, pour tous w,z,y € X, on ait
|d(w, [z,y]) — (z]y)w| < do.

(5) L’espace X est hyperbolique au sens de Gromov i.e., il existe & > 0 telle que, pour

tous x,y,z,w € X, on ait
(#2)w = min{(z[y)w, (y]2)w} — 3.

6.4.2. Compactification. On reprend les mémes idées que pour les espaces hyperboliques.
Les démonstrations identiques ne seront pas répétées. On suppose dorénavant que X est
un espace propre. Notons R l’ensemble des rayons de X sur lequel on met la relation
d’équivalence r ~ 1’ si dy(r,1’) < co. On désigne R/ ~ par 0X. Si w € X est fixé, on
note R, les rayons issus de w. On a une bijection naturelle entre R/ ~ et R,,

On munit X U 0X de la topologie suivante. On identifie X aux segments issus de w.
Un systeme de voisinages de x € X est donné par les boules (de rayon fini). Si ry € R,
on écrit V,, (R, €) I'ensemble des rayons r de X U0X tel que d(ro(R),r(R)) < €. Une base
de voisinages d’'un point £ € 90X est donnée par la famille V,, (R, ¢), ou ry représente £ et
R,e > 0.

Si & € 0X, on dit que r aboutit en £ si r représente .

EXERCICE 6.14. — Soit X un espace propre de type CAT(-1). On se donne deuzx rayons
ro et r_ non équivalents. Montrer qu’il existe une géodésique v asymptote a ry en 400
et a r_ en —oo, unique au paramétrage pres. On dit que X a la propriété de visibilité.
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Fonctions de Busemann.— Soit  un rayon. On considere
=1 —t.
b, (x) Jim d(r(t),z) —t

Si€ e 0X et x,y € X, on définit Se(z,y) = b.(z) — b.(y) ou r aboutit en £ (cette limite
est indépendante du rayon car ils sont tous asymptotes). Les lignes de niveau {b,.(z) = L}
sont les horospheres.

On a les propriétés suivantes, dont la démonstration s’établit comme dans le cas hy-
perbolique.

PROPOSITION 6.15. — On a les propriétés suivantes :
(1) Be(w,y) = —Be(y, x).
(2) Be(x,y) = Be(x, 2) + Be(2,y).
(3) |Be(z,y)| < d(x,y), avec égalité si et seulement si x,y,& sont alignés.
(4) L’application (X U0X) x X x X = R qui a (§,x,y) — Be(x,y) est continue.

Produit de Gromov a l’infini.— On montre que le produit de Gromov se prolonge
continiment a U'infini dans le cadre CAT(-1) aussi.
PROPOSITION 6.16. — Soitw € X, £,( € 0X ety la géodésique entre & et (, cf. 'exercice
6.14. On a

) 1

lim_(aly)o = 5 (Ge(w.p) + Be(w.p)

(z,y)—=(&C
ot p € . La limite est indépendante de p et on la note (§|C)y. De plus, si x, y sont dans

X, alors

(@ (€10): — (€10)y = 5(Belav) + Bela,v)).

Angle de comparaison a l’infini.— On se donne &,( € X et w € X. On considere
deux rayons r et r’ issus de w qui tendent vers £ et ( respectivement. Soit rg un rayon
de H?. Pour tout ¢ > 0, on considere le triangle de comparaison de {w,r(t),r'(t)}, ou r
est représenté par ro. Puisqu'’il vérifie le théoreme de comparaison, on a Z,(r(t),r'(t)) >
Zy(r(t"),r'(t')) pour tout ¢’ < ¢. Donc

Lu(€.0) = lim Z,(r(0).7'(1)
existe et définit 'angle de comparaison a Uinfini de {w, &, C}.
PROPOSITION 6.17 (Distance visuelle). — Pour tous z € X, £, € 0X, on a
sin %43}(& ¢) = e~ (€0

et cela définit une distance d, sur 0X. Les angles de comparaison définissent aussi une
distance. De plus, si x,y € X et &, € 0X, alors

d,(£,¢) = ez Be@u)+he@vq (¢ ).
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Nous aurons besoin du fait suivant :
LEMME 6.18. — Si 61,0, € [0,7/2] et sinf; + sinfy < 1, alors 0; + O < 7/2.

Démonstration. — A 0, fixé, application 6y —> sin 0y + sin 0, est strictement croissante
de sinf; asiné; +1; donc il existe m < 7/2, tel que Oy < m équivaut a sin 6y +sinfy < 1;
or

sin @, + sin(7/2 — 6;) = sin 6, + cos @, > sin® 6, + cos*#; = 1
donc m < 7w /2 — 6. O

Size Xetabe (XUOIX), on pose
1
sz(a,b) = sin §4m(a, b).

LEMME 6.19. — Les fonctions s, et Z,(-,) définissent une distance sur {a € X, |a—z| =
t} pour tout ¢t > 0.

DEMONSTRATION. Seule 'inégalité triangulaire requiert une démonstration. On considere
a, b, c sur la sphere centrée en = et de rayon t > 0.
On peut supposer que s, (a,b) + s,(b,c¢) < 1. Cela implique que Z,(a,b) + Z,(b,c) < .
Prenons des triangles de comparaison {7, @, b} et {z,b,¢} de sorte que la géodésique

(7, b) sépare @ de €.

s]

8|
o

ol

Par hypotheses, on a
Z#(@,b) + Zz(be) < 7
et |T —a| = |7 —b| = |7 —¢| = t. Donc le segment [@, ] coupe [Z, b] en un unique point .
On note u € [x,b] le point correspondant. L’inégalité triangulaire et I'inégalité CAT(-1)

donnent

IN

la — ¢ la —u| + |u — |

IN

la —u| + |u — ¢

= |a—7¢.
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En utilisant la loi hyperbolique du cosinus dans H?, il vient

se(a,¢) = (1—6084( ))1/2

ch2t —chla — ¢
2sh?t

B ch|a—c|—1 12
U 2%t
<0h|a—c\—1) 12

2sh?
= L
sin — 5 =(@,7?).

Mais puisque Zz(a@, ) = Zz(a@,b)+Lz(b, ) et sin(a+3) < sin a+sin 3 pour «, f € [0, 7/2],
on obtient
sz(a,c) <sin %Ax(a, b) + sin %Ax(l_), )
soit
sz(a,c) < sz(a,b) + sz(b,c).
|

DEMONSTRATION DE LA PROPOSITION 6.17. Les mémes calculs que pour la proposition
4.13 montrent

1

et la dépendance au point base provient de (4). L'inégalité triangulaire découle du lemme.m

Vue hyperbolique du birapport.— Si k& > 1, on désigne par 9*X l’ensemble des
k-uplets ordonnés de points deux a deux distincts de 0.X.

On définit p : X — X comme suit. Etant donnés (&,&, (), on considere I'unique point

p de (£ &) tel que (£]¢), = (£']C),-

EXERCICE 6.20. — Montrer que p est bien définie.

PROPOSITION 6.21. — Si (£,&,(, (') € 9*X, Uexpression

dz (57 5/)d$<C7 C/>
dy (&, ¢")d (€, )

ne dépend pas de x € H" et on la note [£,&', (', (]. De plus,

logle, €,¢, €] = 5 (Be(plC,&,¢),plE,C,€)) — Belp(€, & C), P& G )

et
| lOg[g, 5/7 C/a C” = dX<p(§7 C» 6/)7p(<a 57 C/» :
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Action des isométries.— Le groupe des isométries préserve la relation d’équivalence
~, donc opere sur 0X.
PROPOSITION 6.22. — Si g est une isométrie alors
(1) g préserve les birapports.
(2) g est conforme au sens que
def. ..
|g/(§)|az = lim
(3)

A

Le bord comme un espace métrique mesuré.— Muni d’une action géométrique, le
bord d’un espace CAT(-1) admet un analogue de la mesure de Lebesgue de la sphere.

THEOREME 6.23. — Soit (X, w) un espace géodésique propre CAT(-1) pointé, et soit G
un groupe qui agit géométriguement sur X. On suppose que G est non élémentaire i.e.,
0X contient au moins 3 points. L’entropie volumique vérifie

v Y lim sup }% log [{G(w) N B(w, R)}| = dim (0X, d.,) .

Soit p la mesure de Hausdorff dans la dimension v.
(i) p est Ahlfors-réguliere de dimension v : il existe C > 1 telle que

(1/C)r* < p(B(&, 7)) < Cr*

pour tout x € 0X et r € [0,diam 0X].
(ii) p est une mesure G-conforme i.e., pour tout g € G, p < g*p < p et

Agp . | rrene _
dp &) =19 p—pp-;

(i1i) L’action de G est ergodique pour p.

De plus, deux mesures G-conformes sont proportionnelles.

On déduit du point (ii) la formule de changement de variables

p(g(A)) = /A 19’ [wdp

pour tout borélien A C 0X.

6.5. Espaces hyperboliques et espaces CAT(-1)

Le but de ce paragraphe est de montrer la généralisation suivante du théoreme de
Mostow.

THEOREME 6.24 (M. Bourdon). — On suppose que G est un groupe qui opére géométriquement
sur H", n > 3, et sur un espace X de type CAT(-1) propre, géodésiquement complet et
d’entropie volumique (n — 1). Alors X et H" sont isométriques.
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6.5.1. Flot géodésique et transformations de Mdbius. Soit X un espace CAT(-1). Notons

G X l'ensemble des géodésiques paramétrées g : R — X que 'on munit de la distance

= alax = [ Pa(®) = (0] 5t
On définit le flot géodésique sur GX par ®4(y(t)) = vy(t + s).

EXERCICE 6.25. — Soit X un espace CAT(-1).

(1) Montrer que le groupe d’isométries opére sur GX par isométries, et que son action

commute avec celle du flot géodésique.

(2) Montrer que si G opére proprement discontiniment par isométries sur X, il en est

de méme de son action sur GX.

(3) Montrer que l'application v € GX +— v(0) € X est une quasi-isométrie.

On définit 7 = 7y : X — GX par 7(§,€,¢() = v o y(—00) = &, y(+0) = £ et
7(0) = p(&. €, ).
EXERCICE 6.26. — Soient X, Y deux espaces CAT(-1) et ¢ : 0X — Y wune trans-
formation de Mobius. Montrer qu’il existe un homéomorphisme ¥ : GX — GY tel que
Uomyx =my 0@ qui conjugue les flots géodésiques, ot p(&,&',C) = (©€, &', ¢C).
Paramétrage de Hopf.— Chaque géodésique v dans X a deux points limites a I'infini
que I'on note y(—o00) et y(+00). On se fixe un point base w € X, et on définit

H:GX - 9*’X xR

par
H(7y) = (7(=00),7(+00), B;(100)(w, 7(0))) -

Comme dans le cas hyperbolique, H est un homéomorphisme. Dans cet espace, le flot
géodésique devient
D&, & s) = (&€ s +1).
Soit p la mesure de construite au paragraphe précédent. Si g est une transformation de

Mobius et E est borélien, alors la formule de changement de variables donne
plo(B) = [ 19dp(o).

On définit la mesure p sur 9?X ainsi : si £ C 9?°X est borélien, on pose

ME%iédM@®dmm_

|z —y[*
On constate que p est une mesure de Radon sur 92X
LEMME 6.27. — La mesure p est invariante sous I’action du groupe de Mébius. Réciproquement,

si f:0X — 0X est un homéomorphisme tel que f*u = c- pu, ot ¢ > 0 est une constante,
alors f est une transformation de Mdobius.
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Sur 'espace du flot géodésique GX, on considere la mesure m = H*(du ® dt) via
le paramétrage de Hopf. Cette mesure est une mesure de Radon invariante par le flot
géodésique (car la mesure de Lebesgue est invariante par translations) et par I'action des
isométries de X (car p est).

On se donne un groupe G qui opere géométriquement sur X. La restriction de la mesure
m a GX/G (considéré comme domaine fondamental de G sur GX) définit une mesure

me sur GX/G, invariante par 'action du flot géodésique et de masse finie.

Le théoreme de Hopf reste valable dans ce contexte et on obtient :

COROLLAIRE 6.28. — L’action de G sur (0°X, ) est ergodique.

Le théoreme 6.24 nécessite la condition sur I'entropie volumique de X pour appliquer

le résultat suivant :

THEOREME 6.29 (Pansu [Pan, Cor.7.2]). — Un homéomorphisme quasimobius ¢ : S™ —
Z, ou Z est n-Ahlfors régulier et n > 2, est absolument continu.

Ce type de résultats est étendu dans le cadre des espaces métriques dans [HK]. Cela
implique que la conjugaison quasimobius préserve les mesures ergodiques induites sur les

paires de points.

6.5.2. Fxtension des transformations de Mobius. Le but de ce paragraphe est de montrer

le théoreme suivant.

THEOREME 6.30 (M. Bourdon). — Soit X un espace CAT(-1) propre et géodésiquement
complet. S’il existe une transformation de Mébius f : OH" — 0X alors X et H" sont
isométriques.

Nous aurons ainsi tous les ingrédients pour montrer le théoreme 6.24 dont la démonstration

est mot pour mot la méme que celle du théoreme de Mostow présentée au paragraphe 6.3.

Nous suivons [Bou2] de pres en établissant d’abord quelques lemmes.

LEMME 6.31. — Soit f : 9H* — X un plongement de Mdbius. On considere (&1, &, (1, &) €
O'H? tel que les géodésiques (&1,&) et (1, () soient sécantes en un point w. Notons

(61,6, G, ) € 0'X Vimage de (&1, &, (i, G2) par f. Alors les géodésiques (&7, &) et (¢, ()
sont sécantes en un point x. De plus, on a pour tous i, j € {1, 2},
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DEMONSTRATION. Soit = € (&1, &) tel que Z,(&],¢1) = Z.(&,¢S). On note B cette valeur
commune et on pose @ = Z,,(&1,(1). On a, d’apres la proposition 6.17,
2 a

(5) sin” o = €1, €15 &2, o]
= [6,¢, 6. ¢

1 1
= st = s (6. ¢) s 26 @)

Par ailleurs, on a aussi
(6) cos? % = sin?’ ; a
= [517(27627€1]
= [6, 6. &, ¢
.1 o1
= s 541(517 Cé) * S 541<C17 55)
Puisque Z,(+,-) est une distance, il vient

Zo(§,G) 2 m =6,
éx(gév Ci) Z ™= B .

v

(7)

On obtient de (6), (7) puis (5)

1 1
cos? = > sinSZ,(§,G3) - sin 5 2,(¢]. &)
> sinZﬂ > coszé
2 2
> cos? @ .
2

Toutes ces inégalités deviennent donc des égalités. On déduit par exemple de (5) le fait
que d,((},¢5) = 1, ce qui montre que z est un point de (¢7,¢5). En permutant les indices,
il vient, pour tous 4, j € {1,2},

LEMME 6.32. — Soient &1, 1, (1, &2, M2, (o Six points sur OH? deux a deux distincts et dans
cet ordre, et désignons par des primes leurs images par f. Les géodésiques (£1,&2), (m1,72)
et (¢1,¢2) sont concourantes si et seulement si les géodésiques (£1,&5), (], n5) et ({7, ()
sont concourantes.
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DEMONSTRATION. Supposons d’abord que les géodésiques (£],&5), (n7,m5) et ({}, ¢h) sont
concourantes en x. Si les géodésiques (&1, &), (m1,m2) et (1, (2) ne le sont pas, leurs points
d’intersection sont les sommets d’un triangle. Par conséquent, le lemme 6.31 nous dit que

la somme de ses angles intérieurs est

Zo(§1,m) + Za(m, ¢1) + Za2((1,65) > m,

puisque Z,(+,-) est une distance. Ceci contredit la formule de Gauss-Bonnet.
Réciproquement, si on fait courir 7; de & a &, le point d’intersection de (1], n5) avec

(&1, &) parcourt toute la géodésique (&), &S). 11 existe donc un point 1] tel que (0}, n5) la

coupe au méme point que ({}, (). Mais alors leurs images réciproques sont concourantes

dans H?, ce qui implique 7} = ). [

DEMONSTRATION DU THEOREME 6.30. On montre d’abord qu’un plongement de Mobius
f: OH? — 0X s’étend en un plongement isométrique. soit z € H?; les lemmes 6.31 et 6.32
impliquent que le faisceau des géodésiques qui passent par x s’envoient sur un faisceau de
géodésiques concourantes, ce qui nous permet de définir une transformation F : H? — X.
La proposition 6.21 et le lemme 6.31 montrent alors que F' est un plongement isométrique.

Pour en déduire le théoréme, on considere les fibrations pg» : O°H" — H" et px :
X — X dont les fibres sont les triplets qui s’envoient sur un point donné. Il suffit de
montrer que la transformation f : O*H" — 93X préserve les fibres, ce qui impliquera
Iexistence d’une transformation F' : H" — X. De plus, les restrictions de F' aux copies de
H? ¢ H" étant isométriques d’apres ci-dessus, on aura F isométrique. Enfin, ’hypothese
que X est géodésiquement complet impliquera la surjectivité de F'.

Si deux triplets sont dans une méme fibre, alors ils définissent deux, trois ou quatre
géodésiques concourantes. Chaque paire définit un plan, et donc leurs images sont aussi

concourantes. Par conséquent, f : 93H" — 93X préserve les fibrations.
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