
6. LA RIGIDITÉ DE MOSTOW PAR L’ERGODICITÉ DU FLOT

GÉODÉSIQUE

6.1. Flot géodésique

On s’appuie sur [Bou1, Bou2]. Pour le point de vue riemannien, on renvoie à [GHL,

dC, TF]. Soit (M, g) une variété riemannienne. On se place dans le fibré unitaire tangent

T 1M des (x, v) avec x 2 M , v 2 TxM de norme 1. Si g est une isométrie, on pose

g · (x, v) = (g(x), Txg(v)).

On définit le flot géodésique

� : R⇥ T 1M ! T 1M

comme suit. A chacun des points (x, v), on associe la géodésique locale � telle que �(0) = x

et �0(0) = v. On pose, lorsque c’est bien défini,

�(t, x, v) = �t(x, v) = (�(t), �0(t)) .

Exercice 6.1. — (1) Montrer que �t+t0 = �t � �t0.

(2) Montrer que si g est une isométrie, alors �t � g = g � �t.

On considère maintenant Hn. Notons GH
n l’ensemble des géodésiques paramétrées � :

R ! H
n que l’on munit de la distance

dGHn(�1, �2) =

Z

R

d(�1(t), �2(t))
e�|t|

2
dt .

On définit le flot géodésique sur GH
n par �s(�) = (t 7! �(s+ t)).

Exercice 6.2. — Montrer que le groupe d’isométries opère sur GH
n par isométries, et

que son action commute avec celle du flot géodésique.

Exercice 6.3. — Montrer que si G opère proprement discontinûment par isométries sur

H
n, il en est de même de son action sur GH

n.

Exercice 6.4. — Montrer que l’application � 2 GH
n 7! �(0) 2 H

n est une quasi-

isométrie.

Paramétrage de Hopf.— Chaque géodésique � dans Hn a deux points limites à l’infini

que l’on note �(�1) et �(+1). On se fixe un point base w 2 H
n, et on définit

H : GH
n ! @2

H
n ⇥ R

par

H(�) = (�(�1), �(+1), ��(+1)(w, �(0))) .

Exercice 6.5. — Montrer que H est un homéomorphisme (il su�t de montrer que H

est continue, bijective et propre).
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Dans cet espace, le flot géodésique devient

�t(⇠, ⇠
0, s) = (⇠, ⇠0, s+ t) .

6.2. Ergodicité du flot géodésique

Soit µ une mesure borélienne �-finie sur T 1
H

n. On dit qu’elle est invariante sous le flot

géodésique si, pour tout borélien A ⇢ T 1
H

n, pour tout t 2 R,

µ(A) = µ(�t(A)) .

Soit � la mesure de Lebesgue sur Sn�1. Si g est une transformation de Möbius de S
n�1

et E est borélien, alors la formule de changement de variables donne

�(g(E)) =

Z

E

|g0|n�1d� .

On définit la mesure µ sur Sn�1 ⇥ S
n�1 ainsi : si E ⇢ S

n�1 ⇥ S
n�1 est borélien, on pose

µ(E) =

Z

E

d�(x)⌦ d�(y)

|x� y|2(n�1)
e

.

On constate que µ est une mesure de Radon sur (Sn�1 ⇥ S
n�1) \ {(x, x)}.

Lemme 6.6. — La mesure µ est invariante sous l’action du groupe de Möbius.

Démonstration. Soit g une transformation de Möbius. On considère un borélien A⇥B ;

on a

µ(g(A⇥ B)) =

Z

g(A)⇥g(B)

d�(x)⌦ d�(y)

|x� y|2(n�1)
e

=

Z

A⇥B

|g0(x)|n�1|g0(x)|n�1d�(x)⌦ d�(y)

|g(x)� g(y)|2(n�1)
e

=

Z

A⇥B

d�(x)⌦ d�(y)

|x� y|2(n�1)
e

= µ(A⇥ B)

où on a utilisé (2). Donc l’action du groupe de Möbius préserve µ.

Sur l’espace du flot géodésique GH
n, on considère la mesure m = H⇤(dµ ⌦ dt) via

le paramétrage de Hopf. Cette mesure est une mesure de Radon invariante par le flot

géodésique (car la mesure de Lebesgue est invariante par translations) et par l’action des

isométries de H
n (car µ l’est).

On se donne un groupe G qui opère librement et géométriquement sur Hn. Notons D un

domaine fondamental (relativement compact) de cette action. La restriction de la mesure

m à T 1D définit une mesure mG sur GH
n/G, invariante par l’action du flot géodésique et

de masse finie.
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Théorème 6.7 (E.Hopf [Hop]). — Le flot géodésique est ergodique sur (GH
n/G,mG).

Autrement dit, tout ensemble borélien de GH
n/G invariant par le flot géodésique est de

mesure nulle, ou son complémentaire l’est.

Corollaire 6.8. — L’action de G sur (@2
H

n, µ) est ergodique.

Démonstration. Si A invariant par G avec µ(A) > 0, alors A ⇥ R est un ensemble de

mesure positive invariant par G et le flot géodésique. Pour chaque point p = (⇠, ⇠0, t) de

A ⇥ R, on peut trouver g 2 G tel que g(p) 2 D. En passant au quotient, on obtient un

ensemble de mesure positive et invariant par le flot : son complémentaire est de mesure

nulle d’après le théorème de Hopf. Par suite, le complémentaire de A ⇥ R est de mesure

nulle, et le complémentaire de A aussi.

On peut consulter [Kai] pour plus de propriétés dans le cadre de la courbure de négative.

6.3. La rigidité de Mostow

Le lemme suivant est dû à D. Sullivan [Sul].

Lemme 6.9. — Si f : Sn�1 ! S
n�1 est un homéomorphisme tel que f ⇤µ = c · µ, où c > 0

est une constante, alors f est une transformation de Möbius.

Démonstration. Soit f une transformation telle que f ⇤µ = cµ. Cela signifie que f ⇤�

est absolument continue par rapport à �. Il existe une fonction borélienne positive h telle

que d(f ⇤�) = hd�. Du coup,

d(f ⇤µ) =
h(x)h(y)d�(x)⌦ d�(y)

|f(x)� f(y)|2(n�1)
e

donc, si f ⇤µ = c · µ, on obtient

c|f(x)� f(y)|2(n�1)
e = h(x)h(y)|x� y|2(n�1)

e

presque partout ; mais, en gardant y fixe, on constate que h doit être continue. Par suite,

si x1, x2, x3 et x4 sont quatre points distincts, alors

[f(x1) : f(x2) : f(x3) : f(x4)]
2(n�1) =

c|f(x1)� f(x2)|2(n�1)
e c|f(x3)� f(x4)|2(n�1)

e

c|f(x1)� f(x3)|2(n�1)
e c|f(x2)� f(x4)|2(n�1)

e

=
h(x1)h(x2)|x1 � x2|2(n�1)

e h(x3)h(x4)|x3 � x4|2(n�1)
e

h(x1)h(x3)|x1 � x3|2(n�1)
e h(x2)h(x4)|x2 � x4|2(n�1)

e

= [x1 : x2 : x3 : x4]
2(n�1) .

donc f est une transformation de Möbius.

Théorème 6.10 (G.D.Mostow). — Soient M1 et M2 deux variétés compactes hyperbo-

liques de dimension au moins 3. Si leurs groupes fondamentaux sont isomorphes, alors

les variétés sont isométriques.
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Pour j = 1, 2, on considère un sous-groupe d’isométries Gj tels que H
dj/Gj ' Mj.

Le groupe Gj opère donc géométriquement sur H
dj . D’après le lemme de Švarc-Milnor,

l’espace hyperbolique H
dj est quasi-isométrique à l’orbite d’un point Gj(wj).

Notons ⇢ : G1 ! G2 un isomorphisme. On définit � : G1(w1) ! G2(w2) par �(g(w1)) =

⇢(g)(w2). On obtient ainsi une quasi-isométrie équivariante � : Hd1 ! H
d2 . Par conséquent,

le Théorème 4.22 montre que � se prolonge en un homéomorphisme quasimöbius ' :

S
d1�1 ! S

d2�1 équivariant.

On en déduit en particulier que d1 = d2 = d.

Puisque d � 3, le théorème 5.9 implique que ' est absolument continu. Notons � la

mesure de Lebesgue de S
d�1 et µ la mesure sur @2

H
d définie par

dµ(x, y) =
d�(x)⌦ d�(y)

|x� y|2(d�1)
e

.

Par suite, il existe une fonction intégrable h telle que d('⇤�) = hd�. Donc les mesures

µ et '⇤µ sur @2
H

d sont dans la même classe. Étant ergodiques (théorème de Hopf), on en

déduit qu’elles sont proportionnelles. Par le lemme 6.27, on conclut que ' est de Möbius.

Comme ' est une transformation de Möbius qui commute avec G1 et G2, ' se prolonge en

une isométrie hyperbolique équivariante par la proposition 3.18, et passe donc au quotient

en une isométrie.

Exercice 6.11. — Montrer que si d = 2, alors ou bien ' est totalement singulier, ou

bien ' est une homographie.

6.4. Espaces CAT(-1)

Nous nous référons ici essentiellement à [BH, GdlH, Bou1, Bou2]. Un espace métrique

CAT(-1) est un espace géodésique dont les triangles sont plus fins que leurs homologues

de H2. Un tel espace partage de nombreuses propriétés avec les espaces hyperboliques Hd,

d � 2, qui s’établissent avec les mêmes arguments.

6.4.1. Triangle de comparaison. Soit X un espace métrique géodésique.

Rappelons qu’un triangle � est la donnée de trois points a, b, c et de trois segments

géodésiques qui les relient deux à deux. On lui associe un triangle de comparaison � =

{a, b, c} sur H2, bien défini à isométries près de H
2, dont la longueur des côtés ont même

longueur que ceux de �. Son existence découle essentiellement de l’inégalité triangulaire.

En e↵et, si on place a et b dans H
2 à distance dX(a, b), et que l’on considère le cercle

centré en a de rayon dX(a, c), alors un point courant z de ce cercle aura sa distance à

b qui variera entre dX(a, b) + dX(a, c) et |dX(a, b) � dX(a, c)| ; or cet intervalle contient

dX(b, c) par l’inégalité triangulaire donc le théorème des valeurs intermédiaires nous donne

l’existence de c à distance dX(a, c) de a et dX(b, c) de b. On définit aussi l’angle comparaison

\a(b, c) comme étant l’angle correspondant de � (en a).
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On considère enfin l’application f� : � ! � dont la restriction à chaque côté est une

isométrie et telle que f(a, b, c) = (a, b, c).

Définition 6.12. — (1) On dit que � satisfait le théorème de comparaison d’Aleksan-

dro↵ si f� est une dilatation.

(2) On dit que X est un espace CAT(-1) si tout triangle de X vérifie le théorème de

comparaison d’Aleksandro↵.

Les espaces hyperboliques H
n, n � 2, sont des exemples d’espaces CAT(-1). Plus

généralement, les variétés riemanniennes simplement connexes de courbure sectionnelle

majorée par (�1).

Exercice 6.13. — Soit X un espace CAT(-1). Etablir les propriétés suivantes.

(1) Par deux points passe un unique segment géodésique.

(2) Soit � un triangle hyperbolique. La distance d’un point x aux deux côtés opposés est

borné par log(1 +
p
2).

(3) Soient r1, r2 deux rayons géodésiques. Ou bien r1 et r2 sont asymptotes et il existe

u 2 R tel que limt!1 dX(r1(t+ u), r2(t)) = 0 ; sinon dX((r1(t), r2(t)) & t.

(4) Il existe �0 > 0 telle que, pour tous w, x, y 2 X, on ait

|d(w, [x, y])� (x|y)w|  �0 .

(5) L’espace X est hyperbolique au sens de Gromov i.e., il existe � > 0 telle que, pour

tous x, y, z, w 2 X, on ait

(x|z)w � min{(x|y)w, (y|z)w}� � .

6.4.2. Compactification. On reprend les mêmes idées que pour les espaces hyperboliques.

Les démonstrations identiques ne seront pas répétées. On suppose dorénavant que X est

un espace propre. Notons R l’ensemble des rayons de X sur lequel on met la relation

d’équivalence r ⇠ r0 si dH(r, r0) < 1. On désigne R/ ⇠ par @X. Si w 2 X est fixé, on

note Rw les rayons issus de w. On a une bijection naturelle entre R/ ⇠ et Rw

On munit X [ @X de la topologie suivante. On identifie X aux segments issus de w.

Un système de voisinages de x 2 X est donné par les boules (de rayon fini). Si r0 2 R,

on écrit Vr0(R, ") l’ensemble des rayons r de X [@X tel que d(r0(R), r(R))  ". Une base

de voisinages d’un point ⇠ 2 @X est donnée par la famille Vr0(R, "), où r0 représente ⇠ et

R, " > 0.

Si ⇠ 2 @X, on dit que r aboutit en ⇠ si r représente ⇠.

Exercice 6.14. — Soit X un espace propre de type CAT(-1). On se donne deux rayons

r+ et r� non équivalents. Montrer qu’il existe une géodésique � asymptote à r+ en +1
et à r� en �1, unique au paramétrage près. On dit que X a la propriété de visibilité.
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Fonctions de Busemann.— Soit r un rayon. On considère

br(x) = lim
t!1

d(r(t), x)� t .

Si ⇠ 2 @X et x, y 2 X, on définit �⇠(x, y) = br(x)� br(y) où r aboutit en ⇠ (cette limite

est indépendante du rayon car ils sont tous asymptotes). Les lignes de niveau {br(x) = L}
sont les horosphères.

On a les propriétés suivantes, dont la démonstration s’établit comme dans le cas hy-

perbolique.

Proposition 6.15. — On a les propriétés suivantes :

(1) �⇠(x, y) = ��⇠(y, x).

(2) �⇠(x, y) = �⇠(x, z) + �⇠(z, y).

(3) |�⇠(x, y)|  d(x, y), avec égalité si et seulement si x, y, ⇠ sont alignés.

(4) L’application (X [ @X)⇥X ⇥X ! R qui à (⇠, x, y) 7! �⇠(x, y) est continue.

Produit de Gromov à l’infini.— On montre que le produit de Gromov se prolonge

continûment à l’infini dans le cadre CAT(-1) aussi.

Proposition 6.16. — Soit w 2 X, ⇠, ⇣ 2 @X et � la géodésique entre ⇠ et ⇣, cf. l’exercice

6.14. On a

lim
(x,y)!(⇠,⇣)

(x|y)w =
1

2
(�⇠(w, p) + �⇣(w, p))

où p 2 �. La limite est indépendante de p et on la note (⇠|⇣)w. De plus, si x, y sont dans

X, alors

(4) (⇠|⇣)x � (⇠|⇣)y =
1

2
(�⇠(x, y) + �⇣(x, y)) .

Angle de comparaison à l’infini.— On se donne ⇠, ⇣ 2 @X et w 2 X. On considère

deux rayons r et r0 issus de w qui tendent vers ⇠ et ⇣ respectivement. Soit r0 un rayon

de H
2. Pour tout t > 0, on considère le triangle de comparaison de {w, r(t), r0(t)}, où r

est représenté par r0. Puisqu’il vérifie le théorème de comparaison, on a \w(r(t), r0(t)) �
\w(r(t0), r0(t0)) pour tout t0  t. Donc

\w(⇠, ⇣) = lim
t!1

\w(r(t), r
0(t))

existe et définit l’angle de comparaison à l’infini de {w, ⇠, ⇣}.

Proposition 6.17 (Distance visuelle). — Pour tous x 2 X, ⇠, ⇣ 2 @X, on a

sin
1

2
\x(⇠, ⇣) = e�(⇠|⇣)x

et cela définit une distance dx sur @X. Les angles de comparaison définissent aussi une

distance. De plus, si x, y 2 X et ⇠, ⇣ 2 @X, alors

dy(⇠, ⇣) = e
1
2 (�⇠(x,y)+�⇣(x,y))dx(⇠, ⇣) .
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Nous aurons besoin du fait suivant :

Lemme 6.18. — Si ✓1, ✓2 2 [0, ⇡/2] et sin ✓1 + sin ✓2 < 1, alors ✓1 + ✓2 < ⇡/2.

Démonstration. — À ✓1 fixé, l’application ✓2 7! sin ✓1+sin ✓2 est strictement croissante

de sin ✓1 à sin ✓1+1 ; donc il existe m  ⇡/2, tel que ✓2 < m équivaut à sin ✓1+sin ✓2 < 1 ;

or

sin ✓1 + sin(⇡/2� ✓1) = sin ✓1 + cos ✓1 � sin2 ✓1 + cos2 ✓1 = 1

donc m  ⇡/2� ✓1. ⇤

Si x 2 X et a, b 2 (X [ @X), on pose

sx(a, b) = sin
1

2
\x(a, b) .

Lemme 6.19. — Les fonctions sx et \x(·, ·) définissent une distance sur {a 2 X, |a�x| =
t} pour tout t > 0.

Démonstration. Seule l’inégalité triangulaire requiert une démonstration. On considère

a, b, c sur la sphère centrée en x et de rayon t > 0.

On peut supposer que sx(a, b) + sx(b, c) < 1. Cela implique que \x(a, b) +\x(b, c) < ⇡.

Prenons des triangles de comparaison {x, a, b} et {x, b, c} de sorte que la géodésique

(x, b) sépare a de c.

Par hypothèses, on a

\x(a, b) + \x(b, c) < ⇡

et |x� a| = |x� b| = |x� c| = t. Donc le segment [a, c] coupe [x, b] en un unique point u.

On note u 2 [x, b] le point correspondant. L’inégalité triangulaire et l’inégalité CAT(-1)

donnent

|a� c|  |a� u|+ |u� c|

 |a� u|+ |u� c|

= |a� c| .
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En utilisant la loi hyperbolique du cosinus dans H2, il vient

sx(a, c) =

✓
1� cos\x(a, c)

2

◆1/2

=

✓
1

2
� ch2t� ch |a� c|

2sh2t

◆1/2

=

✓
ch |a� c|� 1

2sh2t

◆1/2


✓
ch |a� c|� 1

2sh2t

◆1/2

= sin
1

2
\x(a, c) .

Mais puisque \x(a, c) = \x(a, b)+\x(b, c) et sin(↵+�)  sin↵+sin � pour ↵, � 2 [0, ⇡/2],

on obtient

sx(a, c)  sin
1

2
\x(a, b) + sin

1

2
\x(b, c)

soit

sx(a, c)  sx(a, b) + sx(b, c) .

Démonstration de la proposition 6.17. Les mêmes calculs que pour la proposition

4.13 montrent

sin
1

2
\x(⇠, ⇣) = e�(⇠|⇣)x

et la dépendance au point base provient de (4). L’inégalité triangulaire découle du lemme.

Vue hyperbolique du birapport.— Si k � 1, on désigne par @kX l’ensemble des

k-uplets ordonnés de points deux à deux distincts de @X.

On définit p : @3X ! X comme suit. Étant donnés (⇠, ⇠0, ⇣), on considère l’unique point

p de (⇠, ⇠0) tel que (⇠|⇣)p = (⇠0|⇣)p.

Exercice 6.20. — Montrer que p est bien définie.

Proposition 6.21. — Si (⇠, ⇠0, ⇣, ⇣ 0) 2 @4X, l’expression

dx(⇠, ⇠0)dx(⇣, ⇣ 0)

dx(⇠, ⇣ 0)dx(⇠0, ⇣)

ne dépend pas de x 2 H
n et on la note [⇠, ⇠0, ⇣ 0, ⇣]. De plus,

log[⇠, ⇠0, ⇣ 0, ⇣] =
1

2
(�⇣(p(⇣, ⇠, ⇣

0), p(⇠, ⇣, ⇠0))� �⇠(p(⇣, ⇠, ⇣
0), p(⇠, ⇣, ⇠0)))

et

| log[⇠, ⇠0, ⇣ 0, ⇣]| = dX(p(⇠, ⇣, ⇠
0), p(⇣, ⇠, ⇣ 0)) .



Rigidité de Mostow-09

Action des isométries.— Le groupe des isométries préserve la relation d’équivalence

⇠, donc opère sur @X.

Proposition 6.22. — Si g est une isométrie alors

(1) g préserve les birapports.

(2) g est conforme au sens que

|g0(⇠)|x
def.
= lim

⇣!⇠

dx(g(⇠), g(⇣))

dx(⇠, ⇣)
= e�⇠(x,g�1(x)) .

(3)

|g0(⇠)|x|g0(⇣)|x =

✓
dx(g(⇠), g(⇣))

dx(⇠, ⇣)

◆2

.

Le bord comme un espace métrique mesuré.— Muni d’une action géométrique, le

bord d’un espace CAT(-1) admet un analogue de la mesure de Lebesgue de la sphère.

Théorème 6.23. — Soit (X,w) un espace géodésique propre CAT(-1) pointé, et soit G

un groupe qui agit géométriquement sur X. On suppose que G est non élémentaire i.e.,

@X contient au moins 3 points. L’entropie volumique vérifie

v
def.
= lim sup

1

R
log |{G(w) \B(w,R)}| = dim (@X, dw) .

Soit ⇢ la mesure de Hausdor↵ dans la dimension v.

(i) ⇢ est Ahlfors-régulière de dimension v : il existe C � 1 telle que

(1/C)rv  ⇢(B(⇠, r))  Crv

pour tout x 2 @X et r 2 [0, diam @X].

(ii) ⇢ est une mesure G-conforme i.e., pour tout g 2 G, ⇢ ⌧ g⇤⇢ ⌧ ⇢ et

dg⇤⇢

d⇢
(⇠) = |g0(⇠)|vw ⇢� pp. ;

(iii) L’action de G est ergodique pour ⇢.

De plus, deux mesures G-conformes sont proportionnelles.

On déduit du point (ii) la formule de changement de variables

⇢(g(A)) =

Z

A

|g0|vwd⇢ ,

pour tout borélien A ⇢ @X.

6.5. Espaces hyperboliques et espaces CAT(-1)

Le but de ce paragraphe est de montrer la généralisation suivante du théorème de

Mostow.

Théorème 6.24 (M.Bourdon). — On suppose que G est un groupe qui opère géométriquement

sur H
n, n � 3, et sur un espace X de type CAT(-1) propre, géodésiquement complet et

d’entropie volumique (n� 1). Alors X et Hn sont isométriques.
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6.5.1. Flot géodésique et transformations de Möbius. Soit X un espace CAT(-1). Notons

GX l’ensemble des géodésiques paramétrées g : R ! X que l’on munit de la distance

|�1 � �2|GX =

Z

R

|�1(t)� �2(t)|
e�|t|

2
dt .

On définit le flot géodésique sur GX par �s(�(t)) = �(t+ s).

Exercice 6.25. — Soit X un espace CAT(-1).

(1) Montrer que le groupe d’isométries opère sur GX par isométries, et que son action

commute avec celle du flot géodésique.

(2) Montrer que si G opère proprement discontinûment par isométries sur X, il en est

de même de son action sur GX.

(3) Montrer que l’application � 2 GX 7! �(0) 2 X est une quasi-isométrie.

On définit ⇡ = ⇡X : @3X ! GX par ⇡(⇠, ⇠0, ⇣) = � où �(�1) = ⇠, �(+1) = ⇠0 et

�(0) = p(⇠, ⇠0, ⇣).

Exercice 6.26. — Soient X, Y deux espaces CAT(-1) et ' : @X ! @Y une trans-

formation de Möbius. Montrer qu’il existe un homéomorphisme  : GX ! GY tel que

 � ⇡X = ⇡Y � ' qui conjugue les flots géodésiques, où '(⇠, ⇠0, ⇣) = ('⇠,'⇠0,'⇣).

Paramétrage de Hopf.— Chaque géodésique � dans X a deux points limites à l’infini

que l’on note �(�1) et �(+1). On se fixe un point base w 2 X, et on définit

H : GX ! @2X ⇥ R

par

H(�) = (�(�1), �(+1), ��(+1)(w, �(0))) .

Comme dans le cas hyperbolique, H est un homéomorphisme. Dans cet espace, le flot

géodésique devient

�t(⇠, ⇠
0, s) = (⇠, ⇠0, s+ t) .

Soit ⇢ la mesure de construite au paragraphe précédent. Si g est une transformation de

Möbius et E est borélien, alors la formule de changement de variables donne

⇢(g(E)) =

Z

E

|g0|vxd⇢(x) .

On définit la mesure µ sur @2X ainsi : si E ⇢ @2X est borélien, on pose

µ(E) =

Z

E

d⇢(x)⌦ d⇢(y)

|x� y|2v .

On constate que µ est une mesure de Radon sur @2X.

Lemme 6.27. — La mesure µ est invariante sous l’action du groupe de Möbius. Réciproquement,

si f : @X ! @X est un homéomorphisme tel que f ⇤µ = c · µ, où c > 0 est une constante,

alors f est une transformation de Möbius.
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Sur l’espace du flot géodésique GX, on considère la mesure m = H⇤(dµ ⌦ dt) via

le paramétrage de Hopf. Cette mesure est une mesure de Radon invariante par le flot

géodésique (car la mesure de Lebesgue est invariante par translations) et par l’action des

isométries de X (car µ l’est).

On se donne un groupe G qui opère géométriquement sur X. La restriction de la mesure

m à GX/G (considéré comme domaine fondamental de G sur GX) définit une mesure

mG sur GX/G, invariante par l’action du flot géodésique et de masse finie.

Le théorème de Hopf reste valable dans ce contexte et on obtient :

Corollaire 6.28. — L’action de G sur (@2X,µ) est ergodique.

Le théorème 6.24 nécessite la condition sur l’entropie volumique de X pour appliquer

le résultat suivant :

Théorème 6.29 (Pansu [Pan, Cor. 7.2]). — Un homéomorphisme quasimöbius ' : Sn !
Z, où Z est n-Ahlfors régulier et n � 2, est absolument continu.

Ce type de résultats est étendu dans le cadre des espaces métriques dans [HK]. Cela

implique que la conjugaison quasimöbius préserve les mesures ergodiques induites sur les

paires de points.

6.5.2. Extension des transformations de Möbius. Le but de ce paragraphe est de montrer

le théorème suivant.

Théorème 6.30 (M.Bourdon). — Soit X un espace CAT(-1) propre et géodésiquement

complet. S’il existe une transformation de Möbius f : @Hn ! @X alors X et H
n sont

isométriques.

Nous aurons ainsi tous les ingrédients pour montrer le théorème 6.24 dont la démonstration

est mot pour mot la même que celle du théorème de Mostow présentée au paragraphe 6.3.

Nous suivons [Bou2] de près en établissant d’abord quelques lemmes.

Lemme 6.31. — Soit f : @H2 ! X un plongement de Möbius. On considère (⇠1, ⇠2, ⇣1, ⇣2) 2
@4
H

2 tel que les géodésiques (⇠1, ⇠2) et (⇣1, ⇣2) soient sécantes en un point w. Notons

(⇠01, ⇠
0
2, ⇣

0
1, ⇣

0
2) 2 @4X l’image de (⇠1, ⇠2, ⇣1, ⇣2) par f . Alors les géodésiques (⇠01, ⇠

0
2) et (⇣

0
1, ⇣

0
2)

sont sécantes en un point x. De plus, on a pour tous i, j 2 {1, 2},

\x(⇠
0
i, ⇣

0
j) = \w(⇠i, ⇣j) .
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Démonstration. Soit x 2 (⇠01, ⇠
0
2) tel que \x(⇠01, ⇣

0
1) = \x(⇠02, ⇣

0
2). On note � cette valeur

commune et on pose ↵ = \w(⇠1, ⇣1). On a, d’après la proposition 6.17,

sin2 ↵

2
= [⇠1, ⇣1, ⇠2, ⇣2](5)

= [⇠01, ⇣
0
1, ⇠

0
2, ⇣

0
2]

=
dx(⇠01, ⇣

0
1) · dx(⇠02, ⇣ 02)

dx(⇠01, ⇠
0
2) · dx(⇣ 01, ⇣ 02)

� dx(⇠
0
1, ⇣

0
1) · dx(⇠02, ⇣ 02)

= sin2 �

2
= sin

1

2
\x(⇠

0
1, ⇣

0
1) · sin

1

2
\x(⇠

0
2, ⇣

0
2) .

Par ailleurs, on a aussi

cos2
↵

2
= sin2 ⇡ � ↵

2
(6)

= [⇠1, ⇣2, ⇠2, ⇣1]

= [⇠01, ⇣
0
2, ⇠

0
2, ⇣

0
1]

=
dx(⇠01, ⇣

0
2) · dx(⇠02, ⇣ 01)

dx(⇠01, ⇠
0
2) · dx(⇣ 01, ⇣ 02)

� dx(⇠
0
1, ⇣

0
2) · dx(⇠02, ⇣ 01)

= sin
1

2
\x(⇠

0
1, ⇣

0
2) · sin

1

2
\x(⇣

0
1, ⇠

0
2).

Puisque \x(·, ·) est une distance, il vient

(7)

(
\x(⇠01, ⇣

0
2) � ⇡ � � ,

\x(⇠02, ⇣
0
1) � ⇡ � � .

On obtient de (6), (7) puis (5)

cos2
↵

2
� sin

1

2
\x(⇠

0
1, ⇣

0
2) · sin

1

2
\x(⇣

0
1, ⇠

0
2)

� sin2 ⇡ � �

2
� cos2

�

2

� cos2
↵

2
.

Toutes ces inégalités deviennent donc des égalités. On déduit par exemple de (5) le fait

que dx(⇣ 01, ⇣
0
2) = 1, ce qui montre que x est un point de (⇣ 01, ⇣

0
2). En permutant les indices,

il vient, pour tous i, j 2 {1, 2},

\x(⇠
0
i, ⇣

0
j) = \w(⇠i, ⇣j) .

Lemme 6.32. — Soient ⇠1, ⌘1, ⇣1, ⇠2, ⌘2, ⇣2 six points sur @H2 deux à deux distincts et dans

cet ordre, et désignons par des primes leurs images par f . Les géodésiques (⇠1, ⇠2), (⌘1, ⌘2)

et (⇣1, ⇣2) sont concourantes si et seulement si les géodésiques (⇠01, ⇠
0
2), (⌘

0
1, ⌘

0
2) et (⇣ 01, ⇣

0
2)

sont concourantes.
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Démonstration. Supposons d’abord que les géodésiques (⇠01, ⇠
0
2), (⌘

0
1, ⌘

0
2) et (⇣

0
1, ⇣

0
2) sont

concourantes en x. Si les géodésiques (⇠1, ⇠2), (⌘1, ⌘2) et (⇣1, ⇣2) ne le sont pas, leurs points

d’intersection sont les sommets d’un triangle. Par conséquent, le lemme 6.31 nous dit que

la somme de ses angles intérieurs est

\x(⇠
0
1, ⌘

0
1) + \x(⌘

0
1, ⇣

0
1) + \x(⇣

0
1, ⇠

0
2) � ⇡,

puisque \x(·, ·) est une distance. Ceci contredit la formule de Gauss-Bonnet.

Réciproquement, si on fait courir ⌘1 de ⇠1 à ⇠2, le point d’intersection de (⌘01, ⌘
0
2) avec

(⇠01, ⇠
0
2) parcourt toute la géodésique (⇠01, ⇠

0
2). Il existe donc un point ⌘001 tel que (⌘001 , ⌘

0
2) la

coupe au même point que (⇣ 01, ⇣
0
2). Mais alors leurs images réciproques sont concourantes

dans H2, ce qui implique ⌘001 = ⌘01.

Démonstration du Théorème 6.30. On montre d’abord qu’un plongement de Möbius

f : @H2 ! @X s’étend en un plongement isométrique. soit x 2 H
2 ; les lemmes 6.31 et 6.32

impliquent que le faisceau des géodésiques qui passent par x s’envoient sur un faisceau de

géodésiques concourantes, ce qui nous permet de définir une transformation F : H2 ! X.

La proposition 6.21 et le lemme 6.31 montrent alors que F est un plongement isométrique.

Pour en déduire le théorème, on considère les fibrations pHn : @3
H

n ! H
n et pX :

@3X ! X dont les fibres sont les triplets qui s’envoient sur un point donné. Il su�t de

montrer que la transformation f : @3
H

n ! @3X préserve les fibres, ce qui impliquera

l’existence d’une transformation F : Hn ! X. De plus, les restrictions de F aux copies de

H
2 ⇢ H

n étant isométriques d’après ci-dessus, on aura F isométrique. Enfin, l’hypothèse

que X est géodésiquement complet impliquera la surjectivité de F .

Si deux triplets sont dans une même fibre, alors ils définissent deux, trois ou quatre

géodésiques concourantes. Chaque paire définit un plan, et donc leurs images sont aussi

concourantes. Par conséquent, f : @3
H

n ! @3X préserve les fibrations.
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