
5. LA RIGIDITÉ DE MOSTOW PAR LA GÉOMÉTRIE

QUASICONFORME

5.1. Structures conformes

On se réfère à [BH, Chap. II.10], [DK, Chap. 23] et [Tuk]. Une structure euclidienne sur

R
n, n � 2, est donnée par un produit scalaire, c’est-à-dire une matrice symétrique définie

positive M . Pour v, w 2 R
n, on écrit hv, wiM = tvMw. On note S+ l’espace des matrices

symétriques définies positives.

Exercice 5.1. — Soit M 2 S+, montrer que la sphère unité pour h·, ·iM est un ellipsöıde

centré en 0 pour la structure euclidienne standard, dont on donnera les caractéristiques

en fonction de M . Réciproquement, montrer qu’un ellipsöıde centré en 0 définit un unique

produit scalaire dont c’est la sphère unité.

Si u : E ! F est un isomorphisme entre espaces vectoriels de dimension finie et qF la

forme quadratique associée à un produit scalaire sur F , on définit le tiré en arrière de q

par u⇤q(x) = q(u(x)), soit u⇤q = q � u. On vérifie que la forme polaire de q est un produit

scalaire. Si E = F = R
n, u est donné par P 2 GLn(R) et q est induite par M 2 S+, alors

P ⇤M = tPMP .

Exercice 5.2. — Soit P 2 GLn(R).

(1) En utilisant que tPP est symétrique et définie positive, montrer qu’il existe O1, O2 2
On(R) telles que O1PO2 est diagonale.

(2) Comment les valeurs propres de tPP et O1MO2 sont-elles reliées ?

Les valeurs propres de O1PO2 s’appellent les valeurs singulières de P .

Définition 5.3 (Structure conforme). — La proportionalité entre produits scalaires d’un

espace vectoriel définit une relation d’équivalence dont les classes sont les structures

conformes. Deux produits scalaires sont conformément équivalents s’ils sont proportion-

nels.

Une structure conforme sur R
n est donc la donnée d’une matrice symétrique définie

positive à un facteur strictement positif près, ou encore de la forme des sphères, autrement

dit, d’un ellipsöıde à dilatation près. Notons S l’ensemble de ces matrices normalisées

par leur déterminant fixé égal à 1. On décrit donc les structures conformes comme une

sous-variété de codimension 1 de l’espace des structures euclidiennes. L’espace tangent

TMS d’une structure conforme M est l’espace des matrices symétriques U telles que

trM�1U = 0.

Exercice 5.4. — Montrer que deux produits scalaires sont conformément équivalents

si et seulement si les angles des vecteurs sont préservés si n � 2. Que se passe-t-il en

dimension 1 ?
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Si M 2 SLn(R), l’application ⇢(M) = tM · M détermine une matrice de S, et est

surjective. On vérifie que ⇢(A) = ⇢(B) si et seulement si il existe O 2 SOn(R) telle que

A = OB, donc S est isomorphe à SLn(R)/SOn(R).

Exercice 5.5. — Soit M 2 SLn(R), montrer que M�1
S
n�1 est la sphère unité de ⇢(M).

Le groupe GLn(R) opère sur S via l’action suivante

(P,M) 2 GLn(R)⇥ S 7! P [M ] = (detP )�2/n (tPMP ) .

Cette action est transitive et correspond au tiré en arrière de la structure conforme définie

par M par l’application P . On dit que P : (Rn,M1) ! (Rn,M2) est conforme si P [M2] =

M1.

L’espace des structures conformes.— On rappelle que (M,N) 7! tr tMN définit sur

l’espace des matrices Mn(R) le produit scalaire standard lorsqu’on identifie les coe�cients

des matrices à R
n2
. De plus, l’exponentielle des matrices définit un di↵éomorphisme des

matrices symétriques sur les matrices symétriques définies positives dont on note log son

inverse. Leurs valeurs propres se correspondent par exp / log.

On définit sur S la métrique riemannienne g = gS par

gM(V,W ) =

p
n

2
tr (M�1 · V ·M�1 ·W )

où V,W 2 TMS. Il s’agit de la métrique induite de celle définie sur l’espace S+ des

structures euclidiennes de R
n par la même formule. On désigne dans la suite la distance

induite dgS par dS .

Proposition 5.6. — Le groupe GLn(R) opère par isométries sur (S, gS) et

dS(I,M) =

p
n

2

0

@
X

�M (�)=0

(log �)2

1

A
1/2

,

où �M désigne le polynôme caractéristique de M 2 S.

Démonstration. Comme M 7! P [M ] est linéaire, c’est aussi son application linéaire

tangente. Du coup, pour V,W 2 TMS, on a

(P ⇤gP [M ])(V,W )
def.
= gP [M ](P [V ], P [W ])

=

p
n

2
tr [( tPMP )�1 tPV P ( tPMP )�1 tPWP ]

=

p
n

2
tr [P�1(M�1VM�1W )P ]

=

p
n

2
tr [M�1VM�1W ]

= gP (V,W )

ce qui montre que l’action est isométrique.
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D’après [BH, Cor. II.10.42], les géodésiques issues d’une matrice ⇢(A), A 2 GLn(R),

définissant une structure euclidienne sont de la forme

c : s 7! tA(exp sX)A où X est symétrique, trX = 0 et (
p
n/2)trX2 = 1 .

Pour tout s 2 R, on a c(s)�1c0(s) = A�1 exp(�sX)tA�1 tAX exp sXA = A�1XA . On

vérifie ainsi que c est à vitesse 1 :

gc(s)(c
0(s), c0(s)) =

p
n

2
tr [c(s)�1c0(s)c(s)�1c0(s)] =

p
n

2
tr [A�1X2A] = 1 .

Si A 2 SLn(R) alors det c(s) = det exp sX = exp strX = 1 donc c est contenue dans S.
En particulier, si M 2 S, on considère son logarithme logM —de trace nulle— que l’on

normalise en posant X = (
p
2/(n1/4tr logM)) logM de sorte que (

p
n/2)trX2 = 1. La

géodésique issue de I dirigée par X passe par c((n1/4/
p
2)tr (logM)) = exp logM = M .

On en déduit que S est totalement géodésique. Par conséquent, un calcul montre que

dS(I,M) = `(c|[0,(logM)2)]) =

p
n

2

0

@
X

�M (�)=0

(log �)2

1

A
1/2

.

Si M 2 S, on note k(M) = (n/2)max{| log �|, �M(�) = 0}, qui induit une métrique

GLn(R)-invariante k bi-Lipschitz à g telle que k(I,M) = k(M).

Du coup, ces distances mesurent le défaut de deux produits scalaires à être conformément

équivalents. Elles mesurent également le défaut d’un isomorphisme P à être conforme en

considérant dS(M1, P [M2]) ou k(M1, P [M2]).

Le résultat qui nous intéresse pour la suite est le suivant.

Théorème 5.7 (Theorem II.10.39 [BH]). — La variété riemannienne (S, gS) est un es-

pace complet simplement connexe CAT(0).

Cela vient du fait que (S, gS) est une variété symétrique de type non compact, donc de

courbure sectionnelle négative. Ceci signifie que les triangles de (S, gS) sont plus fins que
les triangles euclidiens.

Le cas de la dimension 2.— Il y a plusieurs raisons pour s’intéresser plus spécifiquement

à la dimension 2. La première est historique puisque les structures conformes ont d’abord

été étudiées dans ce contexte. Ensuite, la dimension 2 concentre un certain nombre de

particularités. Par exemple, le spectre d’une matrice de SL2(R) est déterminée par une

seule valeur propre. Sans doute plus crucial, on peut travailler en notation complexe qui

apporte un éclairage très pertinent comme nous allons le voir, puisque les applications

holomorphes sont conformes en dehors de l’ensemble discret de leurs points critiques.

Proposition 5.8. — En dimension 2, (S, gS) est de courbure constante strictement

négative.
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On établit cette proposition en construisant une dilatation f : H2 ! S. L’application
en question consiste à associer à tout complexe du disque unité µ (modèle de la boule

de H
2) la structure conforme associée au produit scalaire donné par u 7! |u + µū|2, où

l’on voit u à la fois comme un vecteur de R2 et comme un nombre complexe. On pourrait

calculer f ⇤gS pour conclure. On procède autrement afin de limiter les calculs et développer

le formalisme complexe.

Démonstration. Si on écrit µ = a+ ib, on a donc

f(µ) =
1

(1� |µ|2)1/2

 
1 + a b

b 1� a

!

et on vérifie que det f(µ) = 1. On calcule dS(f(0), f(µ)) ; il su�t de calculer le spectre de

f(µ), qui vérifie

�2 � 2

(1� |µ|2)1/2�+ 1 = 0 .

On trouve ainsi

�± =
1± |µ|

(1� |µ|2)1/2 =

✓
(1± |µ|)2

1� |µ|2

◆1/2

=

✓
1± |µ|
1⌥ |µ|

◆1/2

.

Du coup

dS(f(0), f(µ)) =

p
2

2

⇥
(log �+)

2 + (log 1/�+)
2⇤1/2 = | log �+| =

1

2
log

1 + |µ|
1� |µ| .

On a donc dS(f(0), f(µ)) = (1/2)dH(0, µ).

Pour propager cette identité, on étudie la manière dont les applications linéaires opèrent

sur les structures conformes u 7! |u+µū|2. En notation complexe, une application linéaire

s’exprime sous la forme A(z) = �(z + ⌫z̄), avec �, ⌫ 2 C. Cette application est inversible

si, et seulement si, � 6= 0 et |⌫| 6= 1. On peut supposer � = 1 puisqu’on s’intéresse aux

structures conformes. On a, au niveau des produits scalaires,

|A(u) + µA(u)|2 = |(u+ ⌫ū) + µ(ū+ ⌫̄u)|2 = |(1 + µ⌫̄)u+ (⌫ + µ)ū|2

est qui conformément équivalent à
����u+

⌫ + µ

1 + µ⌫̄
ū

����
2

donc on déduit la formule

A⇤µ =
µ+ ⌫

1 + ⌫̄µ
et on reconnâıt la formule d’un automorphisme du disque unité. Son action est donc

isométrique sur H
2. Par ailleurs, A et sa représentation linéaire P 2 GL2(R) vérifient

f(A⇤µ) = P [f(µ)] pour tout µ 2 H
2.

Pour conclure, prenons µ, ⌫ 2 H
2. Il existe P 2 SL2(R) tel que P [f(µ)] = I et soit A

sa représentation complexe de sorte que A⇤µ = 0. On a

dS(f(µ), f(⌫)) = dS(P [f(µ)], P [f(⌫)]) = dS(f(0), f(A
⇤⌫)) = (1/2)dH(A

⇤µ,A⇤⌫) = (1/2)dH(µ, ⌫) .
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5.2. Homéomorphismes quasiconformes

On renvoie à [Väi1, Väi2, IM, Hei, HK] pour les notions abordées ici.

Une application f : X ! X 0 est ⌘-quasimöbius s’il existe un homéomorphisme ⌘ :

R+ ! R+ tel que, pour tous a, b, c, d 2 X deux à deux distincts, on a

[f(a) : f(b) : f(c) : f(d)]  ⌘ ([a : b : c : d]) .

Soit f : X ! Y un homéomorphisme entre espaces métriques. Notons

Lf (x, r) = sup
|x�y|r

|f(x)� f(y)| ,

`f (x, r) = inf
|x�y|�r

|f(x)� f(y)| .

On dit que f est quasiconforme s’il existe une constante H telle que, pour tout x 2 X,

Hf (x)
def.
= lim sup

r!0

Lf (x, r)

`f (x, r)
 H .

Théorème 5.9. — Un homéomorphisme f : bR
n
! bR

n
est quasimöbius si et seulement si

il est quasiconforme où H ne dépend que de ⌘ et réciproquement. On a aussi les propriétés

suivantes.

(i) f est di↵érentiable de di↵érentielle inversible presque partout et |Dxf |n  KOJac f(x)

pour une constante KO  Hn�1, où Jac f(x)
def.
= |detDxf |.

(ii) f préserve les ensembles de mesure de Lebesgue nulle. On a, pour tout ensemble

mesurable A ⇢ bR
n
,

|f(A)| =
Z

A

Jac f .

(iii) f est 1-quasiconforme, au sens où KO = 1, si et seulement si f est une transfor-

mation de Möbius.

On note KO(f) la meilleure constante qui apparâıt dans (ii). D’après ce théorème, f�1

est aussi quasiconforme (puisque les transformations quasimöbius forment un groupe). On

note KI(f) = KO(f�1).

Exercice 5.10. — On se donne f = P 2 GLn(R). Calculer HP , k(P ), KO(P ), KI(P ),

K(P )
def.
= exp k(P ) en fonction des caractéristiques de P et relier ces quantités. Que peut-

on dire si n = 2 ?

Ces homéomorphismes sont donc caractérisés par une propriété infinitésimale —être

quasiconforme, ce qui permet d’utiliser le calcul di↵érentiel, et par une propriété globale

—être quasimöbius, ce qui permet de contrôler leurs modules de continuité comme le

montre l’exercice suivant.

Exercice 5.11. — Soit ⌘ : R+ ! R+ une fonction de distorsion.
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(1) Montrer qu’une famille F d’homéomorphismes ⌘-quasimöbius de Sn telle qu’il existe

trois points distincts x1, x2, x3 2 S
n et m > 0 tels que d(g(xi), g(xj)) � m pour i 6= j

est relativement compacte.

(2) Montrer qu’un groupe de transformations ⌘-quasimöbius est de convergence.

On analyse maintenant le comportement des homéomorphismes quasiconformes sur les

structures conformes.

Définition 5.12 (structure conforme mesurable). — Une structure conforme mesurable

est une application mesurable µ à valeurs dans S telle que k(µ(x)) est essentiellement

bornée.

Si f est un homéomorphisme quasiconforme de S
n, alors f opère sur les structures

conformes en posant

f ⇤µ(x) = Dxf [µ(f(x))].

On a k(f ⇤µ) = k(I, f ⇤µ)  k(I, f ⇤I)+k(f ⇤I, f ⇤µ) = k(I, f ⇤I)+k(I, µ) donc f ⇤µ est bien

essentiellement borné. On remarque que f agit par isométrie sur l’ensemble des structures

conformes.

On définit alors µf = f ⇤I. En dimension 2, chaque structure conforme mesurable est de

la forme f ⇤I comme le montre le théorème de Riemann mesurable : il montre que l’équation

aux dérivées partielles @z̄f = µ@zf , où µ 2 L1 de norme kµk1 < 1, admet une solution

qui est un homéomorphisme quasiconforme tel que µf = µ presque partout. Cependant,

ce n’est pas vrai en général en dimension plus grande. Une application quasiconforme f

est une transformation de Möbius si et seulement si µf = I pp. d’après le théorème 5.9.

Soient µ et ⌫ deux structures conformes sur S
n ; une application quasiconforme f :

S
n ! S

n munie de la structure conforme standard est aussi quasiconforme en tant

qu’homéomorphisme f : (Sn, µ) ! (Sn, ⌫) au sens où k(µ, f ⇤⌫) est essentiellement bornée.

Cela découle du fait que k(·, ·) est une distance invariante et du contrôle qui s’en suit :

k(µ, f ⇤⌫)  k(µ, I) + k(I, f ⇤I) + k(I, ⌫) .

On dit que f estK-quasiconforme si sup ess exp k(µ, f ⇤⌫)  K ; on pose doncK(f, µ, ⌫)(x) =

K(f ⇤⌫, µ)(x) = exp k(f ⇤⌫, µ)(x) là où k est bien définie, de sorte que f estK-quasiconforme

si K(f ⇤⌫, µ)  K presque partout. Une application conforme f : (Sn, µ) ! (Sn, ⌫) vérifie

par définition f ⇤⌫ = µ.

Exercice 5.13. — Soient µ1, µ2, µ3 trois structures conformes mesurables et f : (Sn, µ1) !
(Sn, µ2) et g : (Sn, µ2) ! (Sn, µ3) deux applications quasiconformes. Montrer que (g � f) :
(Sn, µ1) ! (Sn, µ3) est K(f ⇤µ2, µ1)K(g⇤µ3, µ2)-quasiconforme.

On conclut par des propriétés héritées par les limites non constantes de transformations

quasiconformes. Le résultat le plus abouti est sans doute le suivant.
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Théorème 5.14 (Tukia [Tuk, Th.D]). — Soient µ, ⌫ deux structures conformes mesu-

rables et ((Sn, µ)
fk�! (Sn, ⌫))k une suite d’homéomorphismes K-quasiconformes qui tend

vers un homéomorphisme f : (Sn, µ) ! (Sn, ⌫). Si, pour K 0 � 1 et tout " > 0, on a

lim
k!1

|{x 2 S
n, K(f ⇤

k⌫, µ)(x) � K 0 + "}| = 0

alors f est K 0-quasiconforme. En particulier, f est K-quasiconforme.

Il n’est pas vrai en général que l’on aura convergence de (f ⇤
k⌫)n vers f ⇤⌫. Cependant,

le théorème ci-dessus donne un résultat intéressant lorsque l’on peut choisir K 0 = 1.

Corollaire 5.15. — Soient µ et ⌫ deux structures conformes mesurables et ((Sn, µ)
fk�!

(Sn, ⌫))k une suite d’homéomorphismes K-quasiconformes qui tend vers un homéomorphisme

f : Sn ! S
n. Si (f ⇤

k⌫)k tend en mesure vers µ, alors f : (Sn, µ) ! (Sn, ⌫) est conforme.

En particulier, si (µfk)k tend en mesure vers µ, alors on a µf = µ.

Démonstration du corollaire 5.15. Si (f ⇤
k⌫)k tend en mesure vers µ, alors on a

aussi convergence en mesure de (K(f ⇤
k⌫, µ))k vers 1. Donc le théorème 5.14 a�rme que f

est 1-quasiconforme, donc conforme. Pour le second point, on applique ce qui précède à

la suite ((Sn, µ)
fk�! (Sn, I))k.

5.3. La rigidité de Mostow

Nous avons maintenant tous les ingrédients pour montrer le théorème de Mostow.

Théorème 5.16 (G.D.Mostow [Mos]). — Soient M1 et M2 deux variétés compactes

hyperboliques et supposons que la dimension de M1 est au moins 3. Si leurs groupes

fondamentaux sont isomorphes, alors les variétés sont isométriques.

Démonstration. Pour j = 1, 2, notons dj la dimension de Mj. Par hypothèses, il existe

un sous-groupe d’isométries Gj de H
dj tels que Hdj/Gj ' Mj et un isomorphisme ⇢ : G1 !

G2. Le groupe Gj opère géométriquement sur H
dj . D’après le lemme de Švarc-Milnor,

l’espace hyperbolique H
dj est quasi-isométrique à l’orbite d’un point Gj(wj), wj 2 H

nj .

On définit � : G1(w1) ! G2(w2) par �(g(w1)) = ⇢(g)(w2). On obtient ainsi une quasi-

isométrie équivariante � : Hd1 ! H
d2 .

Les propositions 4.17 et 4.19 impliquent que l’action de Gj sur H
dj , j = 1, 2, se prolonge

en une action de convergence uniforme sur la sphère Sdj�1 par transformations de Möbius.

Par le théorème 4.22, � se prolonge en un homéomorphisme quasimöbius ' : Sd1�1 !
S
d2�1, équivariant par continuité. Cela implique notamment que d1 = d2 et on notera d

cette dimension commune.

Si ' est une transformation de Möbius, alors ' se prolonge en une isométrie de H
d —

équivariante par unicité de l’extension, cf. la proposition 3.18 et le théorème 4.2. Montrons

que c’est bien le cas. Si non, comme (d � 1) � 2, ' est quasiconforme et di↵érentiable
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presque partout d’après le théorème 5.9, donc µ' définit une structure conforme mesurable

invariante par l’action de G1 car

g⇤1µ� = g⇤1'
⇤I = '⇤('g1'

�1)⇤I = '⇤⇢(g1)
⇤I = '⇤I = µ� ,

qui est di↵érente de I sur un ensemble de mesure strictement positive.

Comme µ� est mesurable et bornée, elle est presque continue presque partout au sens

que

lim
r!0

|{|µ� µ(x)| � "} \ B(x, r)|
|B(x, r)| = 0

pour tout " > 0 et presque tout x 2 @Hd.

On se place dans le modèle du demi-espace. Soit a 2 R
n un point de presque continuité

tel que µ�(a) 6= I, et considérons une suite de similitudes hk : x 7! �k(x � a) + a où

lim�k = 0. Pour tout R > 0, on a sur B(0, R),

|{h⇤
kµ� � µ�(a)| � "} \ B(0, R)|

|B(0, R)| ! 0 .

Donc, (h⇤
kµ�) tend en mesure vers µ�(a) sur tout compact de R

n.

On se fixe un triplet (a, b, c) de points distincts de Rn. Puisque l’action de convergence

de G1 est uniforme, il existe une suite (gk)k de G1 telle que (gkhk(a, b, c))k est relativement

compacte dans l’espace des triplets de points distincts. On en déduit que (gkhk)k est une

suite de transformations de Möbius relativement compacte. Quitte à extraire une sous-

suite, elle est convergente vers une transformation de Möbius h.

On se fixe à nouveau R > 0. On remarque que �k
def.
= � � (gk � hk) est convergente et

µ�k
= h⇤

kµ� tend en mesure vers µ�(a). D’après le corollaire 5.15, on a donc h⇤µ� = µ�(a)

sur B(0, R), donc sur bR
n
presque partout. Le groupeG = h�1G1h est un groupe de Möbius

qui préserve un champ d’ellipsöıdes constant presque partout sur bR
n
. Cela implique que

le point à l’infini est fixe par G, ce qui est absurde (la moindre transformation qui ne fixe

pas l’infini envoie un champ constant au voisinage de l’infini sur un champ non constant).

5.4. Rigidité quasi-isométrique des groupes fondamentaux des variétés

hyperboliques compactes de dimension au moins 3

On utilise la même stratégie pour montrer la rigidité quasi-isométrique des réseaux

uniformes de l’espace hyperbolique.

Théorème 5.17 (Cannon-Cooper [CC]). — Un groupe de type fini quasi-isométrique à H
d

est virtuellement isomorphe au groupe fondamental d’une variété hyperbolique compacte

de dimension d.

Le cas de la dimension 2 utilise d’autres méthodes, cf. [Gab, CJ]. On suppose d � 3. On

procède en di↵érentes étapes. On montre tout d’abord qu’un tel groupe admet une action
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par homéomorphismes uniformément quasiconformes sur S
d�1. Un tel groupe préserve

une structure conforme mesurable. On s’appuie sur cette structure pour construire une

conjugaison de l’action de G à une action par transformations de Möbius.

Proposition 5.18. — Soit G un groupe quasi-isométrique à H
d, d � 2. Le groupe G

admet une action de convergence uniforme sur Sd�1 par homéomorphismes uniformément

quasiconformes.

Démonstration. Soit � : G ! H
d et  : Hd ! G deux (�, c)-quasi-isométries quasi-

inverses l’une de l’autre. On définit ⇢ : G ! QI(Hd) par ⇢(g) =  � g�. On vérifie que ⇢

est une quasi-action au sens où il existe C � 0 telle que d(⇢(g)⇢(h), ⇢(gh)  C pour tous

g, h 2 G. En e↵et,

d(⇢(g)⇢(h)(x), ⇢(gh)(x) = d( g� h�(x), gh�(x))

 �d(g� h�(x), gh�(x)) + c

 �d(� h�(x), h�(x)) + c

 �c+ c .

Le théorème 4.22 implique que chaque ⇢(g) est une transformation quasi-möbius. De

plus, comme d(⇢(g)⇢(h), ⇢(gh)  C, les extensions cöıncident sur Sd�1, c’est-à-dire ⇢(g)⇢(h) =

⇢(gh). On obtient donc une action de groupe.

Comme G opère par transtormations uniformément quasimöbius, il s’agit d’un groupe

de convergence, cf. l’exercice 5.11. On montre maintenant que l’action est uniforme. Pour

cela, rappelons que l’application p : @3Hd ! H
d qui associe à (a, b, c) la projection de c

sur (a, b) est propre. Il su�t donc de montrer qu’il existe R � 0 tel que p�1(B(�(e), R))

contient un domaine fondamental de l’action diagonale de G sur @3Hd.

Soit donc (a, b, c) un triplet de points distincts sur @Hd et notons p = p(a, b, c) 2 H
d.

Comme � : G ! H
d est une quasi-isométrie, il existe g 2 G tel que d(�(g), p)  c. On a

d(⇢(g�1)(�g),�(e)) = d(�g�1( �g),�(e))  �d(g�1( �)g, e) + c

 �d( �(g), g) + c  �c+ c .

On écrit q = p(⇢(g�1)(a), ⇢(g�1)(b), ⇢(g�1)(c)). Du coup,

d(q,�(e))  d(q, ⇢(g�1)(p)) + d(⇢(g�1)(p), ⇢(g�1)(�g)) + d(⇢(g�1)(�g),�(e))  R

par la scholie 4.23, où R = R(�, c) � 0. On a donc montré que p�1(B(�(e), R)) contient

un domaine fondamental de l’action diagonale de G sur @Hd.

Groupes uniformément quasiconformes.— On se fixe n � 2. L’objectif de ce para-

graphe est de montrer le résultat suivant :

Théorème 5.19 (D. Sullivan, P.Tukia). — Un groupe de convergence uniforme uni-

formément quasimöbius de S
n est conjugué à un groupe discret de transformations de

Möbius cocompact.
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La démonstration résulte de deux étapes. Dans la première, on montre qu’il existe une

structure conforme sur Sn invariante par l’action du groupe. Dans la seconde, on montre

que cette structure est équivalente à la structure standard, ce qui permet de conclure. La

démonstration originale se trouve dans [Tuk].

On utilise ici que l’espace des structures conformes est CAT(0). Un espace métrique

CAT(0) X est un espace géodésique qui vérifie la propriété suivante. Un triangle � =

�(x1, x2, x3) est la donnée de trois points distincts x1, x2, x3 2 X et de trois segments

géodésiques deux à deux. On lui associe un triangle de comparaison x̄1, x̄2, x̄3 2 R
2 muni

de sa structure euclidienne standard tels que d(xi, xj) = |x̄i�x̄j|e pour tous i, j 2 {1, 2, 3}.
On définit ainsi une application f� : � ! �̄ qui envoie xj sur x̄j et qui est une isométrie

restreinte à chaque côté de �. L’espace X est CAT(0) si les triangles � de X sont plus

fins que leurs triangles de comparaison, c’est-à-dire si l’application f� dilate les distances :

d(x, y)  |f�(x)� f�(y)|e pour tous x, y 2 �.

Cette propriété nous servira sous la forme suivante : deux points sont liés par une unique

géodésique, et si D1 et D2 sont deux rayons issus d’une même origine o qui font un angle

riemannien ✓ 2 [0, ⇡], alors, pour tous x1 2 D1, x2 2 D2, on a

d(x1, x2)
2 � d(o, x1)

2 + d(o, x2)
2 � 2d(o, x1)d(o, x2) cos ✓ .

Exercice 5.20. — Soient X un espace métrique CAT(0) et D1 et D2 deux rayons issus

d’une même origine o.

(1) On considère quatre points x1, x0
1 2 D1 et x2, x0

2 2 D2, on suppose d(o, x1) >

d(o, x0
1) > 0 et d(o, x2) > d(o, x0

2) > 0 et on note ✓ et ✓0 les angles au point ō des

triangles de comparaison (ō, x̄1, x̄2) et (ō, x̄0
1, x̄

0
2). Montrer que ✓0  ✓. En déduire

que

\x1ox2
def.
= lim

x12D1!o,x22D2!o
\̄x1ōx̄2

existe et minore tous les angles des triangles de comparaison correspondant. On

appelle cette limite l’angle des rayons D1 et D2.

(2) Montrer que pour tous x1 2 D1, x2 2 D2, on a

d(x1, x2)
2 � d(o, x1)

2 + d(o, x2)
2 � 2d(o, x1)d(o, x2) cos ✓

où ✓ = \x1ox2 désigne l’angle des rayons.

(3) Si X est de plus riemannien, montrer que l’angle des rayons cöıncide avec l’angle

riemannien des vecteurs tangents aux rayons en o.

On montre

Proposition 5.21. — Si X ⇢ S est un ensemble borné, alors il existe un unique couple

(p, r) tel que X ⇢ B(p, r), et où r est le plus petit rayon d’une boule qui contient X. De

plus, l’application X 7! (p, r) est continue pour la topologie de Hausdor↵.
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Démonstration. L’existence d’un tel couple provient d’un argument de compacité. Sup-

posons que l’on ait deux points p1 et p2 tels que X ⇢ B(p1, r) \B(p2, r). Soit w le point

au milieu du segment [p1, p2].

Si x 2 B(p1, r) \ B(p2, r), alors l’un des angles ✓1 = \(x, w, p1) ou ✓2 = \(x, w, p2) est plus

grand que ⇡/2 car la somme des angles riemanniens vaut au moins ⇡. Dans le premier

cas, on obtient en utilisant la condition CAT(0)

r2 � d(x, p1)
2 � d(w, p1)

2 + d(w, x)2 � 2d(w, p1)d(w, x) cos ✓1 > d(x, w)2

et par compacité de B(p1, r) \ B(p2, r), on trouve r0 < r tel que X ⇢ B(w, r0), ce qui

contredit la définition de r.

La continuité de (p, r) est laissée en exercice.

On en déduit

Proposition 5.22. — Soit G un groupe de convergence quasimöbius qui opère sur S
n,

n � 2. Alors il existe une structure conforme invariante par G sur S
n.

Démonstration. Il existe un ensemble de mesure pleine sur Sn invariant par G tel que

toutes les applications g 2 G soient di↵érentiables en chacun de ces points et que le ja-

cobien est strictement positif, puisque G est un groupe dénombrable d’homéomorphismes

quasiconformes.

Notons Mx = {µg(x), g 2 G}. C’est un ensemble borné par définition. Donc la propo-

sition 5.21 s’applique et nous fournit un unique couple (px, rx) tel que Mx ⇢ B(px, rx).

PuisqueG opère par isométries sur les structures conformes, on en déduit que g⇤(Mg(x)) =

Mx, donc g⇤(pg(x)) = px et rg(x) = rx = r. Du coup, si on note µ(x) = px, alors µ définit

une structure conforme invariante. La mesurabilité s’obtient en considérant une suite

croissante de µg(x), g parcourant un ensemble fini, ainsi que la continuité du centre.

Les méthodes de groupes de convergence uniforme sont maintenant utilisées pour re-

dresser cette structure conforme.

Proposition 5.23. — Si G est un groupe de convergence uniforme, conforme pour une

structure µ, alors G est conjugué à un groupe de transformation de Möbius.

Démonstration. On se place dans bR
n
. On peut supposer que a 2 R

n est un point de

presque continuité de µ au sens que

lim
r!0

|{|µ� µ(a)| � "} \ B(a, r)|
|B(a, r)| = 0

pour tout " > 0.

Prenons hk(x) = a + �k(x � a) avec lim�k = 0. Comme dans la démonstration du

théorème de Mostow, on a convergence en mesure de h⇤
kµ vers la structure constante

µ(a). Prenons P 2 SLn(R) telle que P ⇤µ(a) = I.
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Comme l’action de G est cocompacte sur les triplets de points distincts, on peut trouver

m > 0, deux points distincts b et c di↵érents de a et (gk) 2 G telle que gkhk(a, b, c) soit

m-séparé pour tout k � 0. Du coup, l’exercice 5.11 nous permet de supposer que cette

suite est convergente vers un homéomorphisme quasimöbius. Par conséquent, �k
def.
= gkhkP

définit une suite d’homéomorphismes quasimöbius qui converge vers un homéomorphisme

�.

On a �⇤
kµ = (gkhkP )⇤µ = P ⇤(h⇤

kµ) qui tend donc en mesure vers la structure standard

I. D’après le corollaire 5.15, on obtient en considérant la suite ((Sn, I)
�k�! (Sn, µ))k la

conformité de � : (Sn, I) ! (Sn, µ).

Considérons G0 = ��1G�. Observons que, pour g 2 G et g0 = ��1g�, on a

(g0)⇤I = (g0)⇤[�⇤µ] = �⇤[g⇤µ] = �⇤µ = I .

Par conséquent G0 est un groupe de transformations 1-quasiconformes donc de Möbius

par le théorème 5.9.

Remarque 5.24. — Lorsque n = 2, le théorème de Riemann mesurable nous donne

directement l’existence d’un homéomorphisme quasiconforme tel que �⇤I = µ. Il s’agit du

résultat de D. Sullivan, pour lequel la notion de groupe de convergence uniforme n’est pas

utile. Néanmoins, les résultats de P.Tukia sont en fait aussi plus généraux (essentiellement,

il su�t que les points coniques forment un ensemble de mesure positive).

Démonstration du théorème 5.17. Soit G un groupe quasi-isométrique à H
d, d �

3. D’après la proposition 5.18, G admet une action de convergence uniforme sur S
d�1

par homéomorphismes uniformément quasiconformes. Par conséquent, le théorème 5.19

montre que l’action de G est conjuguée à celle d’un groupe de Möbius. Quitte à quotienter

par le noyau de l’action (qui est fini puisque l’action est propre sur les triplets de points),

on obtient un groupe de Möbius virtuellement isomorphe à G. Comme l’action est de

convergence uniforme, on en déduit que l’action du groupe de Möbius est cocompacte.
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[Väi1] Jussi Väisälä. Lectures on n-dimensional quasiconformal mappings. Springer-

Verlag, Berlin, 1971. Lecture Notes in Mathematics, Vol. 229.
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