5. LA RIGIDITE DE MOSTOW PAR LA GEOMETRIE
QUASICONFORME

5.1. Structures conformes

On se réfere a [BH, Chap. I1.10], [DK, Chap. 23] et [Tuk]. Une structure euclidienne sur
R™, n > 2, est donnée par un produit scalaire, c¢’est-a-dire une matrice symétrique définie
positive M. Pour v,w € R", on écrit (v,w)y = wMw. On note S; Pespace des matrices
symétriques définies positives.

EXERCICE 5.1. — Soit M € S, montrer que la sphére unité pour (-, -y est un ellipsoide
centré en 0 pour la structure euclidienne standard, dont on donnera les caractéristiques
en fonction de M. Réciproquement, montrer qu’un ellipsoide centré en O définit un unique
produit scalaire dont c’est la sphére unité.

Siu: FE — F est un isomorphisme entre espaces vectoriels de dimension finie et gz la
forme quadratique associée a un produit scalaire sur F', on définit le tiré en arriére de ¢
par u*q(z) = q(u(z)), soit u*q = qowu. On vérifie que la forme polaire de ¢ est un produit
scalaire. Si £ = F = R", u est donné par P € GL,(R) et ¢ est induite par M € S, alors
P*M = 'PMP.

EXERCICE 5.2. — Soit P € GL,(R).

(1) En utilisant que 'PP est symétrique et définie positive, montrer qu’il existe Oy, Oq €
On(R) telles que O1 POy est diagonale.

(2) Comment les valeurs propres de 'PP et O1 MOy sont-elles reliées ?
Les valeurs propres de O PO, s’appellent les valeurs singulieres de P.

DEFINITION 5.3 (Structure conforme). — La proportionalité entre produits scalaires d’un
espace vectoriel définit une relation d’équivalence dont les classes sont les structures
conformes. Deuz produits scalaires sont conformément équivalents s’ils sont proportion-
nels.

Une structure conforme sur R" est donc la donnée d’une matrice symétrique définie
positive a un facteur strictement positif pres, ou encore de la forme des spheres, autrement
dit, d’'un ellipsoide a dilatation pres. Notons S ’ensemble de ces matrices normalisées
par leur déterminant fixé égal a 1. On décrit donc les structures conformes comme une
sous-variété de codimension 1 de I'espace des structures euclidiennes. L’espace tangent
TS d’'une structure conforme M est 'espace des matrices symétriques U telles que
tr M~1U = 0.

EXERCICE 5.4. — Montrer que deux produits scalaires sont conformément équivalents
si et seulement si les angles des vecteurs sont préservés si m > 2. Que se passe-t-il en
dimension 1 ¢
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Si M € SL,(R), application p(M) = M - M détermine une matrice de S, et est
surjective. On vérifie que p(A) = p(B) si et seulement si il existe O € SO, (R) telle que
A = OB, donc S est isomorphe a SL,(R)/SO,(R).

EXERCICE 5.5. — Soit M € SL,(R), montrer que M~'S"1 est la sphére unité de p(M).

Le groupe GL,(R) opere sur S via ’action suivante
(P,M) € GL,(R) x S = P[M] = (det P)"*" (‘PMP).
Cette action est transitive et correspond au tiré en arriere de la structure conforme définie

par M par I'application P. On dit que P : (R", M) — (R", Ms) est conforme si P[M,] =
M.

L’espace des structures conformes.— On rappelle que (M, N) — tr ‘"M N définit sur
I'espace des matrices M, (R) le produit scalaire standard lorsqu’on identifie les coefficients
des matrices & R™. De plus, 'exponentielle des matrices définit un difféomorphisme des
matrices symétriques sur les matrices symétriques définies positives dont on note log son
inverse. Leurs valeurs propres se correspondent par exp / log.

On définit sur S la métrique riemannienne g = gg par
g (V, W) = \ftr (M~ VM W)

ou VW € TyS. 1l s’agit de la métrique induite de celle définie sur I'espace Sy des
structures euclidiennes de R" par la méme formule. On désigne dans la suite la distance
induite d,g par ds.

PROPOSITION 5.6. — Le groupe GL,(R) opére par isométries sur (S, gs) et
1/2

n
dsU,M)—\QF > (ogA)? |
xm (A)=0

ou xn désigne le polynome caractéristique de M € S.

DEMONSTRATION. Comme M — P[M] est linéaire, c’est aussi son application linéaire
tangente. Du coup, pour V,W € T);S, on a
def.

(P*gP[M])(Va W) = gP[M](P[VLP[W])
= \ftr [("PMP)"''"PVP('"PMP)"''PW P]
= \éﬁtr [PY (M VM W) P]
= *éﬁtr MV MW
= gp(V,W)

ce qui montre que 'action est isométrique.



RIGIDITE DE M0OSTOW-03

D’apres [BH, Cor.11.10.42], les géodésiques issues d'une matrice p(A), A € GL,(R),
définissant une structure euclidienne sont de la forme

c: s+ "AlexpsX)A on X est symétrique, tr X = 0 et (v/n/2)tr X? =1.

Pour tout s € R, on a c(s)1d(s) = A exp(—sX ) A1 AX expsXA = A1 XA. On
vérifie ainsi que c¢ est a vitesse 1 :

Ge(s)(d(8), () = \éﬁtr [c(s)"2 (s)c(s) 7t (s)] = \/ftr AT X2A] =1.
Si A e SL,(R) alors det ¢(s) = det expsX = exp str X = 1 donc ¢ est contenue dans S.
En particulier, si M € S, on considere son logarithme log M —de trace nulle— que 1’'on
normalise en posant X = (v/2/(n'/*tr log M))log M de sorte que (v/n/2)tr X2 = 1. La
géodésique issue de I dirigée par X passe par c((n'/*/v/2)tr (log M)) = explog M = M.
On en déduit que S est totalement géodésique. Par conséquent, un calcul montre que

1/2
Jn
dg([, M) = g(C’[O,(IOgM)Q)]) = 7 Z (log )\)2

X (A)=0
| ]

Si M € S, on note k(M) = (n/2) max{|log A|, xar(\) = 0}, qui induit une métrique
GL, (R)-invariante k bi-Lipschitz a g telle que k(I, M) = k(M).

Du coup, ces distances mesurent le défaut de deux produits scalaires a étre conformément
équivalents. Elles mesurent également le défaut d’un isomorphisme P a étre conforme en
considérant ds(M;, P[Ms]) ou k(M;, P[M)).

Le résultat qui nous intéresse pour la suite est le suivant.

THEOREME 5.7 (Theorem 11.10.39 [BH]). — La variété riemannienne (S, gs) est un es-
pace complet simplement connexe CAT(0).

Cela vient du fait que (S, gs) est une variété symétrique de type non compact, donc de
courbure sectionnelle négative. Ceci signifie que les triangles de (S, gs) sont plus fins que
les triangles euclidiens.

Le cas de la dimension 2.— Il y a plusieurs raisons pour s’intéresser plus spécifiquement
a la dimension 2. La premiere est historique puisque les structures conformes ont d’abord
été étudiées dans ce contexte. Ensuite, la dimension 2 concentre un certain nombre de
particularités. Par exemple, le spectre d’une matrice de SLy(R) est déterminée par une
seule valeur propre. Sans doute plus crucial, on peut travailler en notation complexe qui
apporte un éclairage tres pertinent comme nous allons le voir, puisque les applications
holomorphes sont conformes en dehors de I’ensemble discret de leurs points critiques.

PROPOSITION 5.8. — En dimension 2, (S,gs) est de courbure constante strictement
négative.
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On établit cette proposition en construisant une dilatation f : H?* — S. L’application
en question consiste a associer a tout complexe du disque unité p (modele de la boule
de H?) la structure conforme associée au produit scalaire donné par u + |u + pi|?, ot
'on voit u & la fois comme un vecteur de R? et comme un nombre complexe. On pourrait
calculer f*gs pour conclure. On procede autrement afin de limiter les calculs et développer

le formalisme complexe.

DEMONSTRATION. Si on écrit p = a + ib, on a donc

B 1 I+a b
700 = e ( b —a>

et on vérifie que det f(p) = 1. On calcule ds(f(0), f(p)); il suffit de calculer le spectre de
f(p), qui vérifie

2
N — = A+1=0.
=[Py "
On trouve ainsi
T :<<1i|u|>2>”2:<1i|u|>“2

(1= [z~ \ 1= upP 1F |
Du coup

V2 1/2 1 14+ |u

(00 ) =5 [0+ (o 1/ )] = [log | = g log 1.

On a donc ds(f(0), f(n)) = (1/2)du(0, ).

Pour propager cette identité, on étudie la maniere dont les applications linéaires operent
sur les structures conformes u +— |u -+ ui|?. En notation complexe, une application linéaire
s’exprime sous la forme A(z) = A(z + vz), avec A\, v € C. Cette application est inversible
si, et seulement si, A # 0 et |v| # 1. On peut supposer A = 1 puisqu’on s’intéresse aux
structures conformes. On a, au niveau des produits scalaires,

[ A(u) + pA@)[* = [(u+va) + p(t + vu)|* = [(1+ p2)u+ (v + p)al®

est qui conformément équivalent a
2

‘ v
u+ —U
1+ puv

donc on déduit la formule

h= 14+op
et on reconnait la formule d’un automorphisme du disque unité. Son action est donc

A* /’L+V

isométrique sur H?. Par ailleurs, A et sa représentation linéaire P € GLy(R) vérifient
f(A*n) = P[f(p)] pour tout p € H?.

Pour conclure, prenons u,v € H2 1l existe P € SLy(R) tel que P[f(u)] = I et soit A
sa représentation complexe de sorte que A*u = 0. On a

ds(f(), f(v)) = ds(PLf(w)], PIf(W)]) = ds(f(0), f(A*v)) = (1/2)du(A"n, A"v) = (1/2)du(p, v)
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5.2. Homéomorphismes quasiconformes

On renvoie a [Viil, VAi2, IM, Hei, HK] pour les notions abordées ici.
Une application f : X — X' est n-quasimobius s’il existe un homéomorphisme 7 :
R, — R, tel que, pour tous a,b,c,d € X deux a deux distincts, on a

[fa) : f(b) : fc) - f(d)] <m(la:b:c:d]).
Soit f : X — Y un homéomorphisme entre espaces métriques. Notons

Ly(z,r) = sup [f(z) = fy)l,

le—y|<r

lp(x,r) = inf [f(z) = f(y)l.

lz—y|=r
On dit que f est quasiconforme $’il existe une constante H telle que, pour tout x € X,

def.

L
He(z) = limsupM < H.

r—0 f(mv ’I")
THEOREME 5.9. — Un homéomorphisme f : R" 5 R" est quasimobius si et seulement si
il est quasiconforme ou H ne dépend que den et réciproquement. On a aussi les propriétés
sutvantes.
(i) f est différentiable de différentielle inversible presque partout et |D, f|"* < KoJac f(x)
pour une constante Ko < H"™ ', ou Jac f(x) o |det D, f|.
(ii) f préserve les ensembles de mesure de Lebesque nulle. On a, pour tout ensemble
mesurable A C ]@n,

()| = [ Jact.

(i1i) f est 1-quasiconforme, au sens ot Ko = 1, si et seulement si f est une transfor-
mation de Mdbius.

On note Ko(f) la meilleure constante qui apparait dans (ii). D’apres ce théoreme, f~*
est aussi quasiconforme (puisque les transformations quasimobius forment un groupe). On
note K;(f) = Ko(f™1).

EXERCICE 5.10. — On se donne f = P € GL,(R). Calculer Hp, k(P), Ko(P), K;(P),
K(P) s exp k(P) en fonction des caractéristiques de P et relier ces quantités. Que peut-

on dire sin=2°¢

Ces homéomorphismes sont donc caractérisés par une propriété infinitésimale —étre
quasiconforme, ce qui permet d’utiliser le calcul différentiel, et par une propriété globale
—~6tre quasimobius, ce qui permet de controler leurs modules de continuité comme le

montre 1’exercice suivant.

EXERCICE 5.11. — Soit n: Ry — R, une fonction de distorsion.
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(1) Montrer qu’une famille F d’homéomorphismes n-quasimaébius de S™ telle qu’il existe
trois points distincts xq, T, x5 € S" et m > 0 tels que d(g(z;), g(x;)) > m pouri # j

est relativement compacte.

(2) Montrer qu’un groupe de transformations n-quasimobius est de convergence.

On analyse maintenant le comportement des homéomorphismes quasiconformes sur les

structures conformes.

DEFINITION 5.12 (structure conforme mesurable). — Une structure conforme mesurable
est une application mesurable v a valeurs dans S telle que k(pu(x)) est essentiellement

bornée.

Si f est un homéomorphisme quasiconforme de S”, alors f opere sur les structures

conformes en posant

(@) = Dafu(f(x))].
Onak(f*u) = k(I, f*u) < k(I, f<I)+k(f*I, f*u) = k(I, f*I)+k(I, 1) donc f*u est bien
essentiellement borné. On remarque que f agit par isométrie sur I’ensemble des structures
conformes.

On définit alors py = f*1. En dimension 2, chaque structure conforme mesurable est de
la forme f*I comme le montre le théoreme de Riemann mesurable : il montre que I’équation
aux dérivées partielles s f = p0, f, ot p € L*> de norme ||p)|~ < 1, admet une solution
qui est un homéomorphisme quasiconforme tel que py = 1 presque partout. Cependant,
ce n'est pas vrai en général en dimension plus grande. Une application quasiconforme f
est une transformation de Mobius si et seulement si p1y = I pp. d’apres le théoreme 5.9.

Soient p et v deux structures conformes sur S™; une application quasiconforme f :
S™ — S™ munie de la structure conforme standard est aussi quasiconforme en tant
qu’homéomorphisme f : (S", ) — (S", v) au sens ou k(u, f*v/) est essentiellement bornée.
Cela découle du fait que k(-,-) est une distance invariante et du controle qui s’en suit :

k(p, fv) < k(u, 1) + k(I, 1) + k(I,v).

On dit que f est K-quasiconforme si sup essexp k(u, f*v) < K ; on pose donc K (f, u,v)(x) =
K(f*v,pu)(x) = exp k(f*v, p)(z) la ot k est bien définie, de sorte que f est K-quasiconforme
si K(f*v, ) < K presque partout. Une application conforme f : (S, ) — (S™, v) vérifie
par définition f*r = p.

EXERCICE 5.13. — Soient 1, 2, pig trois structures conformes mesurables et f : (S™, ) —
(S™, ug) et g: (S, ug) — (S™, u3) deuz applications quasiconformes. Montrer que (go f) :
(S™, 1) — (S™, ps) est K(f*pa, 1) K (g*ps, po)-quasiconforme.

On conclut par des propriétés héritées par les limites non constantes de transformations

quasiconformes. Le résultat le plus abouti est sans doute le suivant.



RIGIDITE DE MoOSTOW-07

THEOREME 5.14 (Tukia [Tuk, Th.D]). — Soient p, v deuz structures conformes mesu-
rables et ((S™, p) LN (S™,v))k une suite d’homéomorphismes K -quasiconformes qui tend
vers un homéomorphisme f: (S, u) — (S™,v). Si, pour K' > 1 et tout € > 0, on a

lim [{z € 8", K(fiv,p)() = K +c}| =0
—00
alors f est K'-quasiconforme. En particulier, f est K-quasiconforme.

n’est pas vrai en général que 'on aura convergence de (f}v), vers f*v. Cependan
Il n’est 1 I de (fz *v. C dant,
le théoreme ci-dessus donne un résultat intéressant lorsque I'on peut choisir K’ = 1.

COROLLAIRE 5.15. — Soient u et v deuz structures conformes mesurables et ((S™, p1) LN
(S™,v))x une suite d’homéomorphismes K -quasiconformes qui tend vers un homéomorphisme
f:S™— 8" Si (fiv), tend en mesure vers u, alors f : (S", u) — (S™,v) est conforme.

En particulier, si (j5,)r tend en mesure vers pu, alors on a jiy = pu.

DEMONSTRATION DU COROLLAIRE 5.15. Si (f;v);, tend en mesure vers p, alors on a
aussi convergence en mesure de (K (fiv, u)), vers 1. Donc le théoreme 5.14 affirme que f
est 1-quasiconforme, donc conforme. Pour le second point, on applique ce qui précede a
la suite (S, ) 2 (S, 1)) n

5.3. La rigidité de Mostow

Nous avons maintenant tous les ingrédients pour montrer le théoréeme de Mostow.

THEOREME 5.16 (G.D.Mostow [Mos]). — Soient My et My deux variétés compactes
hyperboliques et supposons que la dimension de M est au moins 3. Si leurs groupes
fondamentauz sont isomorphes, alors les variétés sont isométriques.

DEMONSTRATION. Pour j = 1,2, notons d; la dimension de M;. Par hypotheses, il existe
un sous-groupe d’isométries G; de H% tels que HY /G; ~ M; et un isomorphisme p : G; —
G. Le groupe G; opere géométriquement sur H%. D’apres le lemme de Svarc-Milnor,
'espace hyperbolique H% est quasi-isométrique & lorbite d’un point Gj(wj), w; € H".
On définit ¢ : Gi(wy) — Gao(we) par ¢(g(w1)) = p(g)(wz). On obtient ainsi une quasi-
isométrie équivariante ® : HY — H%.

Les propositions 4.17 et 4.19 impliquent que I'action de G sur H%, j = 1,2, se prolonge
en une action de convergence uniforme sur la sphere S% ! par transformations de Mébius.

Par le théoreme 4.22, ® se prolonge en un homéomorphisme quasimobius ¢ : S"—1 —
S%=1 équivariant par continuité. Cela implique notamment que d; = dy et on notera d
cette dimension commune.

Si ¢ est une transformation de Mébius, alors ¢ se prolonge en une isométrie de HY —
équivariante par unicité de 'extension, cf. la proposition 3.18 et le théoreme 4.2. Montrons
que c’est bien le cas. Si non, comme (d — 1) > 2, ¢ est quasiconforme et différentiable
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presque partout d’apres le théoreme 5.9, donc ji,, définit une structure conforme mesurable

invariante par I'action de Gy car
gitiy = 919" I = ¢* (0™ )T = 9" p(g)" ] = 9" = pg
qui est différente de I sur un ensemble de mesure strictement positive.

Comme 1, est mesurable et bornée, elle est presque continue presque partout au sens
que

o = @) = €} 0 Ba, )
&t Bla.r)]

pour tout € > 0 et presque tout x € OH“.

=0

On se place dans le modele du demi-espace. Soit @ € R™ un point de presque continuité
tel que pg(a) # I, et considérons une suite de similitudes hy : © — Ag(x — a) + a ou
lim Ay, = 0. Pour tout R > 0, on a sur B(0, R),

[{hirs — psla)] = €} N B(0, R)|
|B(0, R)|

Donc, (hjps) tend en mesure vers fi4(a) sur tout compact de R™.

— 0.

On se fixe un triplet (a, b, ¢) de points distincts de R™. Puisque I'action de convergence
de G est uniforme, il existe une suite (g ) de G telle que (grhi(a, b, ¢))x est relativement
compacte dans l'espace des triplets de points distincts. On en déduit que (gghg)x est une
suite de transformations de Mobius relativement compacte. Quitte a extraire une sous-
suite, elle est convergente vers une transformation de Mobius h.

On se fixe a nouveau R > 0. On remarque que ¢y o ¢ o (gr o hy) est convergente et
He, = hipty tend en mesure vers pg(a). D’apres le corollaire 5.15, on a donc h* s = pg(a)
sur B(0, R), donc sur R" presque partout. Le groupe G = h™'Gh est un groupe de Mobius
qui préserve un champ d’ellipsoides constant presque partout sur R". Cela implique que
le point a l'infini est fixe par G, ce qui est absurde (la moindre transformation qui ne fixe
pas l'infini envoie un champ constant au voisinage de l'infini sur un champ non constant).

|

5.4. Rigidité quasi-isométrique des groupes fondamentaux des variétés
hyperboliques compactes de dimension au moins 3

On utilise la méme stratégie pour montrer la rigidité quasi-isométrique des réseaux
uniformes de I'espace hyperbolique.

THEOREME 5.17 (Cannon-Cooper [CC)). — Un groupe de type fini quasi-isométrique o H
est virtuellement isomorphe au groupe fondamental d’une variété hyperbolique compacte
de dimension d.

Le cas de la dimension 2 utilise d’autres méthodes, cf. [Gab, CJ]. On suppose d > 3. On
procede en différentes étapes. On montre tout d’abord qu’'un tel groupe admet une action
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par homéomorphismes uniformément quasiconformes sur S?*. Un tel groupe préserve
une structure conforme mesurable. On s’appuie sur cette structure pour construire une
conjugaison de l'action de G & une action par transformations de Mobius.

PROPOSITION 5.18. — Soit G un groupe quasi-isométriqgue o H?, d > 2. Le groupe G
admet une action de convergence uniforme sur S*=' par homéomorphismes uniformément
quasiconformes.

DEMONSTRATION. Soit ¢ : G — H? et 1) : H? — G deux (), ¢)-quasi-isométries quasi-
inverses I'une de Iautre. On définit p : G — QI(H?) par p(g) = ¥ o g¢. On vérifie que p
est une quasi-action au sens ou il existe C' > 0 telle que d(p(g)p(h), p(gh) < C pour tous
g,h € G. En effet,

d(p(g)p(h)(x), p(gh)(x)

d(gpphe(x), Yghe(z))

< Ad(govhe(x), gho(x)) + ¢
< Ad(¢vhe(x), hd(x)) + ¢
< Ac+ec.

Le théoréme 4.22 implique que chaque p(g) est une transformation quasi-mobius. De
plus, comme d(p(g)p(h), p(gh) < C, les extensions coincident sur S, c’est-a-dire p(g)p(h)
p(gh). On obtient donc une action de groupe.

Comme G opere par transtormations uniformément quasimobius, il s’agit d’un groupe
de convergence, cf. I'exercice 5.11. On montre maintenant que I’action est uniforme. Pour
cela, rappelons que I'application p : *H* — H? qui associe & (a,b,c) la projection de ¢
sur (a,b) est propre. Il suffit donc de montrer qu'il existe R > 0 tel que p~'(B(¢(e), R))
contient un domaine fondamental de I’action diagonale de G sur 6°H.

Soit donc (a,b,c) un triplet de points distincts sur 9H? et notons p = p(a, b, ¢) € H™
Comme ¢ : G — H? est une quasi-isométrie, il existe g € G tel que d(¢(g),p) < c. On a

d(p(g~")(dg), ¢(e)) = d(gg~'(Vpg), ¢le)) < Ad(g~'(¥p)g,e) +c
< M@Wo(g),9)+¢ < Xe+e.

On écrit ¢ = p(p(g~")(a), p(g~")(b), p(¢7")(c)). Du coup,
d(q,é(e)) < d(q.p(g")(p)) + dlp(g™") (). plg~")(09)) + d(p(g~")(d9), é(e)) < R
par la scholie 4.23, ou R = R(\,¢) > 0. On a donc montré que p~!(B(¢(e), R)) contient

un domaine fondamental de I’action diagonale de G sur OHY. [ |

Groupes uniformément quasiconformes.— On se fixe n > 2. L’objectif de ce para-
graphe est de montrer le résultat suivant :

THEOREME 5.19 (D.Sullivan, P.Tukia). — Un groupe de convergence uniforme uni-
formément quasimobius de S est conjugué a un groupe discret de transformations de
Mdébius cocompact.
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La démonstration résulte de deux étapes. Dans la premiere, on montre qu’il existe une
structure conforme sur S” invariante par 1’action du groupe. Dans la seconde, on montre
que cette structure est équivalente a la structure standard, ce qui permet de conclure. La
démonstration originale se trouve dans [Tuk].

On utilise ici que l'espace des structures conformes est CAT(0). Un espace métrique
CAT(0) X est un espace géodésique qui vérifie la propriété suivante. Un triangle A =
A(xy1, 29, x3) est la donnée de trois points distincts z1,x2, 23 € X et de trois segments
géodésiques deux & deux. On lui associe un triangle de comparaison Z;, Z, T3 € R? muni
de sa structure euclidienne standard tels que d(z;, z;) = |7; —Z;|. pour tous 7, j € {1, 2, 3}.
On définit ainsi une application fa : A — A qui envoie x; sur Z; et qui est une isométrie
restreinte a chaque coté de A. L’espace X est CAT(0) si les triangles A de X sont plus
fins que leurs triangles de comparaison, c’est-a-~dire si 'application fa dilate les distances :
d(z,y) < |fa(z) = fa(y)le pour tous z,y € A.

Cette propriété nous servira sous la forme suivante : deux points sont liés par une unique
géodésique, et si Dy et Dy sont deux rayons issus d’une méme origine o qui font un angle
riemannien 0 € [0, 7], alors, pour tous x; € Dy, 23 € Do, on a

d(z1,29)* > d(0,71)* + d(0,72)* — 2d(0, 71)d(0, 72) cos § .

EXERCICE 5.20. — Soient X un espace métrique CAT(0) et Dy et Dy deux rayons issus

d’une méme origine o.

(1) On considére quatre points xq1,x) € Dy et xg,xl, € Dy, on suppose d(o,x1) >
d(o,x)) > 0 et d(o,x9) > d(o,xh) > 0 et on note 0 et 0’ les angles au point o des
triangles de comparaison (0,Z1,T2) et (0,Ty,T,). Montrer que 8" < 0. En déduire
que

——— def. . e
T10T9 = lim T10T9
121€D1~>0,:E2€D2~>0

existe et minore tous les angles des triangles de comparaison correspondant. On
appelle cette limite 'angle des rayons Dy et Ds.

(2) Montrer que pour tous x1 € Dy, x9 € D, on a
d(x1,12)* > d(o,21)* + d(0, 72)* — 2d(0, 71)d(0, x3) cos 0
ol § = T 015 désigne langle des rayons.
(3) Si X est de plus riemannien, montrer que l’angle des rayons coincide avec l’angle
riemannien des vecteurs tangents aux rayons en o.

On montre

PROPOSITION 5.21. — Si X C S est un ensemble borné, alors il existe un unique couple

(p,r) tel que X C B(p,r), et ou r est le plus petit rayon d’une boule qui contient X. De
plus, Uapplication X — (p,r) est continue pour la topologie de Hausdorff.
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DEMONSTRATION. L’existence d’un tel couple provient d’un argument de compacité. Sup-

posons que 'on ait deux points p; et py tels que X C B(py,r) N B(pa, ). Soit w le point

au milieu du segment [py, pa].

Six € B(p1,7) N B(ps,r), alors 'un des angles ¢, = (z,w, p1) ou O = (x,w, p2) est plus
grand que 7/2 car la somme des angles riemanniens vaut au moins 7. Dans le premier
cas, on obtient en utilisant la condition CAT(0)

r? > d(z,p1)? > d(w,p1)? + d(w, z)* — 2d(w, p1)d(w, x) cos O > d(z,w)?

et par compacité de B(py,r) N B(ps,r), on trouve ' < r tel que X C B(w,r’), ce qui
contredit la définition de r.

La continuité de (p,r) est laissée en exercice. ]

On en déduit

PROPOSITION 5.22. — Soit G un groupe de convergence quasimobius qui opére sur S",
n > 2. Alors il eziste une structure conforme invariante par G sur S™.

DEMONSTRATION. Il existe un ensemble de mesure pleine sur S” invariant par G tel que
toutes les applications g € G soient différentiables en chacun de ces points et que le ja-
cobien est strictement positif, puisque G est un groupe dénombrable d’homéomorphismes
quasiconformes.

Notons M, = {uy(z), g € G}. C’est un ensemble borné par définition. Donc la propo-
sition 5.21 s’applique et nous fournit un unique couple (p,,7,) tel que M, C B(ps, r2).

Puisque G opeére par isométries sur les structures conformes, on en déduit que g*(My ) =
M,, donc g*(pg(z)) = Da €t Tg(z) = 7o = 7. Du coup, si on note pu(zr) = p,, alors p définit
une structure conforme invariante. La mesurabilité s’obtient en considérant une suite

croissante de p,(x), g parcourant un ensemble fini, ainsi que la continuité du centre. ®

Les méthodes de groupes de convergence uniforme sont maintenant utilisées pour re-

dresser cette structure conforme.

PROPOSITION 5.23. — Si G est un groupe de convergence uniforme, conforme pour une

structure u, alors G est conjugué a un groupe de transformation de Mdbius.

DEMONSTRATION. On se place dans R". On peut supposer que a € R" est un point de
presque continuité de p au sens que

oo W= (@) 2 e} 0Bl
& [Ba.1)]

pour tout € > 0.
Prenons hi(x) = a + M\g(z — a) avec lim Ay = 0. Comme dans la démonstration du

théoreme de Mostow, on a convergence en mesure de hjpu vers la structure constante
p(a). Prenons P € SL,(R) telle que P*u(a) = I.
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Comme 'action de G est cocompacte sur les triplets de points distincts, on peut trouver
m > 0, deux points distincts b et ¢ différents de a et (gr) € G telle que grphy(a, b, c) soit
m-séparé pour tout £ > 0. Du coup, l'exercice 5.11 nous permet de supposer que cette
suite est convergente vers un homéomorphisme quasimobius. Par conséquent, ¢y, def. gihi P
définit une suite d’homéomorphismes quasimobius qui converge vers un homéomorphisme
¢.

On a ¢jp = (grhe P)*p = P*(hju) qui tend donc en mesure vers la structure standard
I. D’apres le corollaire 5.15, on obtient en considérant la suite ((S™,I) RN (S™, )k la
conformité de ¢ : (S", 1) — (S", ).

Considérons G' = ¢~ 1G¢. Observons que, pour g € G et ¢ = ¢~'g¢p, on a

()T =(g)0o" ] =¢"[g"u] = ¢"n=1.
Par conséquent G’ est un groupe de transformations 1-quasiconformes donc de Mobius
par le théoreme 5.9. [ |

REMARQUE 5.24. — Lorsque n = 2, le théoreme de Riemann mesurable nous donne
directement 'existence d’un homéomorphisme quasiconforme tel que ¢*I = p. 1l s’agit du
résultat de D. Sullivan, pour lequel la notion de groupe de convergence uniforme n’est pas
utile. Néanmoins, les résultats de P. Tukia sont en fait aussi plus généraux (essentiellement,
il suffit que les points coniques forment un ensemble de mesure positive).

DEMONSTRATION DU THEOREME 5.17. Soit G un groupe quasi-isométrique & H?, d >
3. D’apres la proposition 5.18, G admet une action de convergence uniforme sur S¢—!
par homéomorphismes uniformément quasiconformes. Par conséquent, le théoreme 5.19
montre que I'action de G est conjuguée a celle d’un groupe de Mdébius. Quitte a quotienter
par le noyau de Paction (qui est fini puisque l'action est propre sur les triplets de points),
on obtient un groupe de Mobius virtuellement isomorphe a G. Comme 'action est de
convergence uniforme, on en déduit que 'action du groupe de Md&bius est cocompacte. B
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