3. GEOMETRIE CONFORME

Une transformation conforme f : (M, g1) — (Ma, g2) entre deux variétés riemanniennes
est un difféfomorphisme dont les applications tangentes sont toutes des similudes : pour
x € My, il existe A\, > 0 tel que ¢go(T% f(v), To. f (w)) = A\pgi (v, w) pour tous v,w € T, M;.
Par géométrie conforme, on entend I’étude des propriétés des variétés qui sont invariantes
par transformations conformes.

On peut consulter [Thu, Cox, Spi].

3.1. Similitudes euclidiennes

On considere R™, n > 1, muni de sa structure euclidienne canonique. On note le produit
scalaire de deux vecteurs z-y et la norme associée |x|.. Par définition, une similitude est une
transformation f : R"™ — R" telle qu’il existe A > 0 qui vérifie |f(z) — f(y)|e = M|z — yle.
Une isométrie est une application f : R" — R" telle que |f(z) — f(y)|e = |* — y|. pour
tous z,y € R". On note Sim(R") le groupe des similitudes et Isom(R") son sous-groupe
des isométries.

On montre qu'une similitude est une application linéaire :

THEOREME 3.1. — Une application f : R" — R" est une similitude de rapport X > 0 si
et seulement si il existe A € O,(R) et v € R" tels que f(x) = NA-x 4+ v. En particulier,

une isométrie s’écrit sous la forme x — A-x +v

DEMONSTRATION. On laisse en exercice la vérification qu'une application de la forme
f(z) =AA-z+vavec A € O,(R) et v € R" est une similitude.

Supposons que f est une similitude. Soient z,y,z € R" 3 points alignés, on peut
supposer par exemple x € [y, z|, de sorte qu’on ait |y — z|. = |y — z|. + | — z|.. Du coup,
on obtient [f(y) = f(2)[e = Aly—zle = Ay —zfe+ Az —zle = | f(y) = f(2)]e+|f(2) = f(2)]e-
Par suite, on a f(z) € [f(y), f(2)], c’est-a-dire que f transforme une droite en une droite.
En outre, on en déduit aussi que si k € R, alors f(k(z —y)) = k(f(z) — f(y)). En
particulier, I'image du milieu de [y, z] s’envoie sur le milieu de [f(y), f(2)].

De maniere plus générale, I'image d'un triangle est un triangle semblable. Prenons
trois points o, x, y et considérons z = o + (z — 0) + (y — 0) de sorte que oxzy est un
parallelogramme. Par conséquent, les segments [o, z] et [z, y] se coupent en leur milieu. Tl
vient que [f(0), f(2)] et [f(x), f(y)] se coupent aussi en leur milieu, donc I'image de oxzy
est aussi un parallelogramme semblable impliquant que f(z) = f(o) + (f(z) — f(0)) +
() — 1(0)).

On en déduit que f est affine. Comme f/\ est une isométrie, une similitude est une
application de la forme z +— Az +v, A >0, A € O,(R) et v € R". [

EXERCICE 3.2. — Montrer qu’on a Isom(R") ~ R" x O, (R) et Sim(R") ~ (R, \ {0}, x) x
O, (R).
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PROPOSITION 3.3. — Un homéomorphisme f : R" — R" qui préserve [’ensemble des

hyperplans et des sphéres est une similitude.

DEMONSTRATION. Notons g = f — f(0). Si f préserve les hyperplans de R" alors f
préserve aussi leur parallelisme. Il en de méme de g. On en déduit que g préserve les
sous-espaces affines et leur parallelisme aussi puisqu’on les obtient comme intersection
d’hyperplans.

On se fixe deux vecteurs x et y indépendants et l'on considere la construction du
parallelogramme de leur somme : on regarde donc les droites Rz, Ry, x + Ry et y +
Rz. Leurs images sont aussi paralleles deux a deux, donc ¢(0,x,z + y,y) est aussi un
parallelogramme et on en déduit que g(x +vy) = g(x)+g(y). Par continuité, on a la méme
relation pour z et y colinéaires. On en déduit facilement que g est linéaire. Comme g
préserve les spheres, c¢’est une similitude. [ |

Réflexions.— Si p et p’ sont fixés, le lieu des points ¢ équidistants est I'hyperplan affine
H qui coupe le segment [p, p'] orthogonalement en son milieu m. Si |p — ¢l = [P’ — ql.
alors |(p —m) + (m — q)|Z = [(p

2((p—m) - (m—q)) =2((p —m) - (m —q))

soit (p — p') - (m — q) = 0. Réciproquement, si ¢ € H, alors le théoreme de Pythagore

/

—m) + (m — q)|?. On obtient en développant

implique [p—q> = p—m?+ |m—q> =[p —m|?+ |m —q|? = |p/ — q|%

Etant donné un hyperplan affine H et m € H, on note ry : © — z — 2((x —m) - u)u ou
u est un vecteur unitaire orthogonal a H. On vérifie que ry ne dépend pas ni du choix de
m ni celui de u. On appelle ry la réflexion orthogonale par rapport a H.

FarT 3.4. — Une réflexion est une involution isométrique qui fixe exactement et ponc-
tuellement H.

DEMONSTRATION. Si on conjugue par la translation de vecteur m, on arrive a ry(z) =
x — 2(z - u)u. On a pour p et ¢ dans R",
ra(p)-rulq) = p-q+4p-u)(g-u) =2((p-u) (u-q)+(qg-u) (p-u)
= P-q
donc ry est une isométrie.
Si p € H, alors ry(p) = p. Réciproquement, si ry(p) = p alors p-u =0, donc p € H.
De plus, on a
(rmoru)(p) = ru(p)—2(ru(p) - wu
= p—2(p-wu—2(p-u) —2(p-u)u
= p.
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PROPOSITION 3.5. — Les points fizes d’une isométrie non triviale sont contenus dans un

hyperplan. Ils s’identifient a un hyperplan si et seulement si [’isométrie est une réflexion.

DEMONSTRATION. Soit g une isométrie non triviale. Si g(p) # p, et si ¢ est un point fixe,
alors |p — qle = |9(p) — 9(q)|e = |9(p) — qle- Donc g est dans 'hyperplan H médian défini
par {p, g(p)}. Si tous les points de H sont fixes, alors gory admet H U{p} comme points
fixes. Donc g o ry est Papplication identique et g = gor% =Idory = ry. [

EXERCICE 3.6. — L’objet de cet exercice est de montrer que le groupe des isométries est

engendré par les réflexions.

(1) Soient k > 1, et (pj, qj)1<j<k des points tels que |p; — pjle = |¢; — qjle pour tous i, j.
Montrer par récurrence sur k qu’il existe une isométrie g composée de réflexions
telle que g(p;) = q; pour tout j.

(2) Soient g une isométrie et (p;), 0 < j <mn, n+ 1 points en position générale (ils ne
sont contenus dans aucun hyperplan). Montrer qu’il existe une isométrie h obtenue
par composition de réflexions telle que g(p;) = h(p;) pour tout j et en déduire que
g=h.

3.2. Inversions

On se place dans R™™ muni de sa structure euclidienne.

DEFINITION 3.7 (Inversion). — Soit S C R"™ une sphére de dimension n de centre c et
de rayon R > 0. L’inversion par rapport S est Uapplication Ig : R™™\ {c} — R\ {c}

définie par
2

Is(z) =c+ (x —c¢)

|z = cf2
Géométriquement, Is(x) se trouve sur la demi-droite [c, z) tel que

[Is(x) — cle]z — cle = (Is(x) —¢) - (x — ¢) = R?.
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Prenons y un point de S. On a

(y—c)-(y—Is(x)) = (y—c)-((y—c)+ (c—Is(x)))
= ly—ci+(y—2)+@—0) (c—Is(x))
= R+ (y—a) (c—Is(x)) + (x c)) - (¢ = Is(x))
= R+ (y—a) (c—Is(2)) -
done (y —¢) - (y — Is(z)) = (y — x) - (¢ — Is(z)). En particulier, la droite (y, Is(x)) est
tangente a S en y si et seulement si x est la projection orthogonale de y sur (c, ).
PROPOSITION 3.8. — Soit Ig ['inversion par rapport a une sphére S. On a les propriétés
suivantes.
(1) Une inversion est une involution qui fize S ponctuellement.
(2) Les sphéres invariantes différentes de S sont celles qui coupent S orthogonalement.
(3) Les sphéres et espaces affines sont préservés. Plus précisément,
(a) les sphéres disjointes de ¢ sont transformées en sphéres ;
(b) les spheéres passant par ¢ sont transformées en espaces affines, et réciproquement ;
(c) les espaces affines passant par ¢ sont invariants.
(4) La transformation est conforme.

On rappelle quelques propriétés élémentaires des cercles et des spheres qui permettent
d’établir cette proposition.

LEMME 3.9. — Soient S C R" une sphére et o € R" \ S. Il existe une constante K
telle que, pour toute droite passant par o qui coupe S en deux points (éventuellement
confondus) z et 2/, on a (z — o) - (' —0) = K.

La constante K s’appelle la puissance du point o par rapport a la sphére S et vaut
lo—c|* — R2.



RIGIDITE DE MosTow-05

Démonstration. — On note p = |o — ¢|* — R% Si [p,p/] est un diametre, alors (p — o) -
(p' — 0) = p. En effet,

(pP=0)-(P=0) = (pP=c)+(c=0) (' =) +(c—0))
= —lp—clZ+lc—olZ

On suppose qu'une droite passant par o coupe S en deux points z,z’. Alors, notons y
le point diametralement opposé de x. Le triangle (z, 2, y) est donc rectangle en z’, ce qui
implique (z — o) - (2’ —y) = 0.

(x—=0)-(2"=0) = (x=0)-((@"—y)+(y—0))

U

DEMONSTRATION DE LA PROPOSITION 3.8. On vérifie sans mal le point (1). Afin d’étudier
I'image des spheres, on commence par 1’observation suivante. Si S’ est une sphere de di-
mension quelconque dans R", alors c¢’est I'intersection d’'un sous-espace affine A passant
par ¢ avec une sphere de dimension n de méme centre et méme rayon que S’. Or, cet
espace contenant c, il est clairement invariant par Ig ; de plus SN A est aussi une sphere,

de centre c et de rayon R. On se ramene ainsi a des spheres de méme dimension.

SCHOLIE 3.10. — Soit p ¢ S U {c}. Toute sphére S’ qui contient p et Is(p) (# p) est

invariante par Ig et coupe S orthogonalement.

Démonstration. — Soit ¢ € S’ et notons ¢’ € S’ le second point d’intersection de la
droite (c,q) avec S’ (éventuellement confondu a ¢). On note ¢ le centre de S’. Par le
lemme 3.9, on obtient

(c=q)-(c=q)=(c—p)-(c—Is(p) = B’

donc Is(q) = ¢ (sip € SN Y, alors Is(p) = p, mais cela n’implique pas que p est le seul
point de S’ N [¢, p) donc on n’aurait pas pu appliquer le lemme 3.9). De plus, si (¢, q) est
tangente a S’, alors ¢ = q et Is(q) = ¢, donc ¢ € S et (¢, q) est orthogonale a (¢, q),
montrant que les spheres se coupent orthogonalement (ce sont des vecteurs normaux aux
spheres). O

Prenons maintenant une sphere S” invariante par Is (donc disjointe de ¢ car I est définie
sur tout S) et différente de S. Du coup, il existe un point p € S’\ S. Cette sphere vérifie les
hypotheses de la scholie et on en déduit que S et S’ se coupent orthogonalement. Si S et
S’ se coupent orthogonalement, prenons un point d’intersection ¢ € SN .S’ et considérons
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deux points d’intersection p et p’ d’une droite passant par ¢ et coupant S’. On en déduit
par le lemme 3.9 (c—p) - (¢ —p') = |c—¢|2 = R?, donc Is(p) = p'. Cela signifie que 5" est
invariante. Cela conclut la démonstration de (2).

Un sous-espace affine contenant ¢ est clairement invariant. Soit H un espace affine ne
contenant pas c. Quitte a se restreindre au plus petit sous-espace affine contenant H et
¢, on peut supposer que H est un hyperplan. On se fixe p € H qui réalise la distance de ¢
a H. Nous allons montrer que I'image de toute droite de H passant par p se transforme
en un cercle de diametre [c, I5(p)]. Soit p’ un autre point. Puisque |¢ — p|c|c — Is(p)]e =
lc = p'le|le — Is(p)|e et les angles des triangles (¢, p, p') et (¢, Is(p'), Is(p)) sont identiques
en ¢, ces triangles sont semblables. En particulier, le second triangle a un angle droit en
Is(p') ce qui signifie qu’il est sur la sphere de diametre [c, Is(p)]. Cet argument en sens
inverse montre qu’une sphere passant par ¢ s’inverse en un hyperplan 1’évitant.

Soit maintenant S’ une sphere disjointe de ¢. On note K’ la puissance de ¢ par rapport
a S’. On considere 'homothétie D de centre ¢ et de rapport R*/K’. Soient p, p’ deux
points de S” sur la méme droite passant par ¢, et posons ¢ = D(p').

Le lemme 3.9 affirme
2

4= (=) = 1 ) (p—c) = .
Donc q = Is(p). De méme, Is(p') = D(p). On en déduit que Ig(S") = D(S").
Montrons qu’une inversion est conforme. On peut se ramener en conjuguant notre
inversion par une similitude a la réflexion par rapport a la sphere unité. On considere

donc f(x) = z/|z|?. Du coup, on a

On calcule
W2 A-v)? | A w) e

[ [

T f(v) - Tof(v)

Par suite, f transforme la métrique euclidienne en une métrique qui lui est conforme. ®

EXERCICE 3.11. — Montrer que la composée de deux inversions par rapport a des sphéres
concentriques est une similitude. Etudier la réciproque.
PROPOSITION 3.12. — Soit S une sphére de R"™, n > 1.
(1) Soit S" une autre sphere.
(a) Si S" ne contient pas le centre de S, alors Is o Igi o Ig est l'inversion par rapport
a Is(S").
(b) Si S’ contient le centre de S, alors Ig o Ig o Ig est la réflexion par rapport a
Uhyperplan affine I5(S').
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(2) Soit H un hyperplan affine.
(a) Si H ne contient pas le centre de S, alors Isory o Ig est l'inversion par rapport
als(H).

(b) Si H contient le centre de S, alors Isoryols =ry.

DEMONSTRATION. On note ¢ et R le centre et rayon de S, ¢ et R’ ceux de S’

Sic = ¢, alors, pour tout p # ¢, les points ¢, p, Is(p), IsIs(p) et Isls Is(p) sont alignés
donc la loi d’addition entre vecteurs et leurs produits scalaires s’identifient a des sommes
et multiplications de réels positifs, donnés par leur distance a c. Avec cette identification,
on a
_ e =0)-Us(p) — )][(UsLs(p) — ) - (UslsIs(p) — )]
(p—c)-(UslsIs(p) —¢) =
(Is(p) —¢) - (Is'Is(p) — )

R2
ﬁ .
On en déduit une inversion de centre ¢ et de rayon R?/R’.

On suppose maintenant ¢ # ¢’. On vérifie sans mal que IglgIs est une involution
conforme qui fixe ponctuellement Ig(S"\ {c}). Supposons aussi que ¢ n’est pas sur S’. Du
coup, S” = Ig(S’) est une sphere de centre un point ¢’ sur la droite (¢, ¢’). On montre
Isls s = Ign sur R"\ {c, Is(c), IsIs(c),c"}. Soit p € R" \ {c, Is(c), IsIs(c),"}. On
suppose aussi p ¢ S” puisqu’on sait IslgIg|sn = Id|gn = Ign|gr. Soit T la sphere de
diametre [p, Is#(p)] qui intersecte donc S” et la droite (¢”, p) orthogonalement. On a donc
(";p)NT = {p,Isn(p)}. Pour p générique, le point ¢ n'est pas sur T ni sur (¢”,p).
Du coup, Is(7T) est une spheére qui coupe S’ orthogonalement et W est un cercle
qui coupe également S’ orthogonalement. Par suite, Is(T) et Is((¢”,p)) sont invariants
par Ig. On en déduit que IglgIg laisse T' et (¢, p) invariants, donc leur intersection
{p, Is»(p)}. Comme cette transformation ne fixe pas p, on a IslgIs(p) = Is#(p). Comme
p est générique et Ig» est continue en dehors de {¢”}, on a [glg/Ig = Ig» sur leur ensemble
de définition.

On suppose maintenant ¢ € S’. Par conséquent, H = I5(S"\ {c}) est un hyperplan
affine. Comme ci-dessus, on montre Iglg s = ry sur R" \ {c, Is(), Isls(c)}. Soit p €
R™\ {c, Is(c), IsIs(c)}. Soit T la sphere de diametre [p, 7 (p)] qui intersecte donc H et
la droite (p, 7y (p)) orthogonalement. On a (p,ry(p)) NT = {p,ru(p)}. Pour p générique,
le point ¢ n’est pas sur T ni sur (p,ry(p)). Du coup, Is(T) est une sphere qui coupe S’
orthogonalement et Is((p, 7y (p))) est un cercle qui coupe également S’ orthogonalement.
Par suite, I5(T) et Is((p, 75 (p))) sont invariants par Ig. On en déduit que Iglg Is laisse
T et (p,ru(p)) invariants. Comme cette transformation ne fixe pas p, on a Iglg Is(p) =
ru(p). Comme p est générique et 7y est continue, on a Iglg g = ry sur leur ensemble de
définition. On a ainsi analysé la conjugaison d’une inversion par une autre.

On se donne maintenant un hyperplan affine H et on veut déterminer Igorg o Ig. On
vérifie comme ci-dessus que cette transformation fixe Ig(H). On suppose dans un premier
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temps que ¢ € H de sorte que Ig(H \ {c}) = H \ {c}. Soit p ¢ H, comme ry est une
isométrie, on a

(p—c)- (rulsru(p) —c) = (ru(p) —c) - (Isru(p) — ¢) = R*.

De plus, comme [g préserve les demi-droites issues de ¢, on a (modulo le point ¢)

ra(Isru(lc.p))) = ru(ru(le, p))) = [c.p)
doncryolsorg=1Iget Igorgolsg =rg.

On suppose finalement ¢ ¢ H de sorte que S = Ig(H) U {c} est une sphere contenant
¢, invariante par Igrgls. On note ¢ son centre. Soit p ¢ S’. On considere la spheére T' de
diametre [p, Is(p)] qui coupe donc orthogonalement S et la droite (p, Is(p)) = (¢, p). On
a aussi (¢, p) NT = {p, Is(p)}. Pour p générique, le point ¢ n’est pas sur T ni sur (¢, p).
Du coup, Is(T) est une sphere qui coupe H orthogonalement et Is((c/,p)) est un cercle
qui coupe également H orthogonalement. Par suite, I5(T") et Is((¢, p)) sont invariants par
rg. On en déduit que Igrylg laisse T et (¢, p) invariants. Comme cette transformation ne
fixe pas p, on a Isrgls(p) = Is(p). Comme p est générique et s est continue en dehors
de {c}, on a Igryls = I sur leur ensemble de définition. [

EXERCICE 3.13. — Déterminer l’élément conjugé d’une réflexion ou d’une inversion par
une stmilitude.

3.3. Espace étendu

Soit 7 > 1. On considere la compactification d’Alexandroff R” = R" U {oo} munie de la
topologie telle que I'injection canonique R" < R" est continue et un systeme de voisinage
du point a 'infini est donné par les complémentaires des compacts de R".

Toute réflexion ry de R™ se prolonge en homéomorphisme de R" en posant 7y (00) =
oo et toute inversion Ig par rapport a une sphere de centre ¢ se prolonge aussi en
homéomorphisme de R en posant Is(c) = oo et Ig(o0) = c.

La projection stéréographique nous permettra de munir R" d’une structure rieman-

nienne conformément équivalente a la sphere unité S™.

3.3.1. Projection stéréographique. On identifie R™ & R™ x {0} € R™™! et on considere la
sphere S de centre o = (0,,, —1) et de rayon /2. La projection stéréographique de S™ sur
R"™ est la restriction de Ig. Puisque S™ contient le centre de S, son image est un hyperplan
affine. Il contient les points de SN S™, soit S*~! x {0}. On a bien Ig: S"\ {0} — R". On
note p, : S™\ {0, } = R" la projection stéréographique.

La pro JeCtIOD stéréographique se prolonge a p, : (]@n“, S") — (]@n“, I@n), ce qui permet
de munir R" d'une structure conforme héritée de S™.

Fair 3.14. — Toute réflexion ou inversion de R"™ se prolonge en une transformation
-~n
conforme de R .
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DEMONSTRATION. Avec I'identification de R™ & R™ x {0} ¢ R"!, toute réflexion de R"
est la restriction d’une réflexion de R"*! par rapport & un hyperplan de R"™! orthogonal
a R" et toute inversion est la restriction d’une inversion de R™™ par rapport & une
sphere de méme centre et de méme rayon. L’image de cet hyperplan ou de cette sphere
de I@nﬂ par p, est un hyperplan ou une sphere qui coupe S™ orthogonalement d’apres la
proposition 3.8. Observons que le centre de cette sphere est disjoint de S™. La proposition
3.12 implique que la transformation conjuguée sur S"” par p, est donc la restriction d'une
réflexion ou inversion qui laisse invariante S™, bien définie en tout point. Cela montre que

. An
ces transformations sont conformes sur R . [

Par extension, on appelle sphére de Mobius de R" une sphere de R"™, ou un hyperplan
affine HU {oo}. Du coup, 'inversion ou la réflexion par rapport a une sphere (de Mobius)
donnée préserve les spheres (de Mébius).

3.3.2. Groupe de Mdbius. On définit le birapport de quatre points distincts xq, x2, 23, T4

de R" par
w1 — wofe|as — w4le

[T1: X9 1231 14] = .
|71 — T3] T2 — T4

On le prolonge a R" en passant a la limite quand un point va vers I'infini. Supposons par
exemple que 'on fait tendre x4 vers I'infini. On a
To — I3
o2 =l < loa =l + o2 = aal, = o — il (14 2220 )
|5E3 - I4|e
et

To — T
[T — Zale > |23 — Tule — |22 — 23]e = |23 — 240 (1 — M) _
|I3 _:E4|e

Par conséquent

. |I1 - $2|e
lm [z 29232y = —— .
Tg—>00 ‘xl — x3|6
s S . ~n N , . s .
THEOREME 3.15. — Soit f : R — R un homéomorphisme. Les propriétés suivantes

sont équivalentes.
(1) L’homéomorphisme f est un produit de réflexions.
(2) L’homéomorphisme f préserve les spheéres.
(3) L’homéomorphisme f préserve le birapport.

St f vérifie l'une de ces propriétés, alors [ est conforme.

Un homéomorphisme qui vérifie les conditions de ce théoreme est une transformation
~n

de Mdbius. Ces transformations forment le groupe de Mobius M6b(R ). Ce sont en fait

les seules transformations conformes des la dimension 3.

THEOREME 3.16 (Liouville). — Un homéomorphisme conforme f : U — f(U)(C R")
d’un ouvert U de Rn, n > 3, est la restriction d’une transformation de Mdbius.
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DEMONSTRATION DU THEOREME 3.15. On remarque que le groupe engendré par les
inversions vérifie toutes ces propriétés. La préservation des spheres est donnée par la pro-
position 3.8 et parce que les réflexions sont des isométries euclidiennes. La seule propriété
non triviale est la préservation du birapport par une inversion. Il suffit de traiter le cas
de I(z) = z/|z|>. Rappelons que, pour tout z € R™ \ {0}, on a |T,I(v)|. = |v|./|z|?
donc T, f est une similitude de rapport 1/|z|.; on pose |I'(z)| = 1/|z|> de sorte que

|T:1(v)|e = |I'(x)] - |v]|e. On montre que pour tous z,y € R", on a
'@ ()] - |z —yle = [I(x) = Iyl

Par le calcul,

(@)= I)le = ()= 1) () - 1({1)))

= (I(x)-I(z))+(y) - I(y)) —2(I(z) - I(y))
1 1 2(z - y)
22yl [2f2 - [yl2
(z-2)=2(x-y)+(y-y)

2|2 - [y]2

= [I'@)]- 1w |z -yl

On en déduit maintenant la préservation du birapport.

Soit f un homéomorphisme de R . Si f(00) # 00, on note a = f~*(o0), et on considere
I'inversion I par rapport a une sphere centrée en a, sinon, on appelle I ’application iden-
tique. On définit enfin la transformation g : x + o f(z) — I o f(0). Cette transformation
vérifie g(0) = 0 et g(o0) = o0.

Supposons que f préserve les birapports de quatre points. On traduit cette condition
en considérant 0, x,y, 0o :

9@l _ ol
l9W)le  lyle
Notons A = |g(z)|./|z|e de sorte que |g(y)|e = Aly|e pour tout y € R". Par ailleurs, en

prenant (z,y,0,00), on trouve

9(z) —9W)le _ |z —yle
l9(x)le |

donc |g(z) — g(y)|e = M|z — yle. Par suite, 'application g est une similitude, donc f est
un produit d’inversions de Mobius.
Si f préserve les spheres de Mobius de ]l/én, alors g préserve les hyperplans de R" et les

spheres. Du coup, la proposition 3.3 implique que g est une similitude. [ |

EXERCICE 3.17. — Montrer que le stabilisateur d’un point de R" dans le groupe de Mobius
est conjugué au groupe des similitudes de R".
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3.3.3. FExtension des transformations de Mobius. Soit n > 1 fixé. Toute réflexion Ig :

R' 5> R" par rapport a une sphere S C R" se prolonge de maniere canonique en une
, . ~n+1 ~n+1 . . ~ ~n+1 R R

réflexion g : R — R par rapport a la sphere S C R de méme centre et méme

rayon que S. Du coup, toute transformation de Mdbius de R" est la restriction d’une

~n+1
transformation de Mobius de Rn .

1

Si f et g coincident sur R" alors h = fog " est une transformation de Mobius de

R qui vaut l'identité sur R". Par conséquent, h fixe le point a l'infini donc h est
une isométrie de R™™! qui fixe un hyperplan. D’apres la proposition 3.5, h est ou bien
Papplication identique ou bien la réflexion par rapport & R". En notant stab M(’)’b(]@n) le
sous-groupe de Méb(@nﬂ) qui laisse invariant I@n, on obtient la suite exacte courte

~n ~n

1 — Z/2Z — stabM6b(R') — M6éb(R ) — 1

ou l'involution est donnée par la réflexion p par rapport a R". Comme p|@n = Id, p est
dans le centralisateur de stab Méb(f&n). La suite est scindée puisque toute inversion de
R" est la restriction d'une inversion de I@nﬂ qui préserve le demi-espace supérieur. Cette
extension induit une section s : Méb(f@n) — stab Méb(f@n) dont I'image commute avec p.
On a ainsi montré Méb(]l/én) X 7./27 ~ stab Méb(]@n).

En conjuguant par la projection stéréographique et en notant Mo6b(B) le sous-groupe

des transformations de Mdbius qui préserve la boule unité de R™™, on obtient

PROPOSITION 3.18. — La restriction de l’action de M6b(B) a S™ induit un isomorphisme
entre Mob(B) et M6b(S™). Ils sont engendrés par les inversions par rapport a des sphéres
de Mobius qui coupent S™ orthogonalement. En outre, prenons des transformations de

~ntl ~ntl
Moébius f, g, h : R SR qui préservent B. Si ho foh™Ysn = g|sn alors hofoh™' = g.

1

DEMONSTRATION. La transformation de Mobius ho f o h=' o g~! vaut 'identité sur S”

et fixe la boule unité. Par conséquent, ho f o h™t o g=! est l'application identique. [

3.4. Propriétés de convergence

On étudie dans ce paragraphe le comportement des suites de transformations de Mobius.
On commence par le cas des similitudes. On considere une suite (f,), de similitudes de
R™ définies par f,(z) = A\ A, + vy, avec A, > 0, A, € O,(R) et v, € R". On considere
plusieurs cas qui peuvent étre obtenus par extraction de sous-suites.

On suppose dans un premier temps que (A,), est bornée par A. Du coup, (f,), est
équicontinue. Si (v,) n’est pas bornée, quitte a extraire une sous-suite, la suite tend vers
I'infini et, pour tout x € R", on a |f.(x)]e > |vn|e — Alz|e donc (f,,) tend uniformément
sur les compacts vers l'infini.

Si (v,)n est bornée par B > 0, alors on a deux cas : ou bien (\,), tend vers 0 —

a une sous-suite pres— et on a convergence vers une constante —a une sous-suite pres
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également ; ou bien on a A, > p > 0. Quitte a extraire une sous-suite, on a donc conver-
gence de (\,), vers A > 0, de (A,,), vers A et (v,), vers v. Dans ce cas, on a convergence
sur les compacts vers f : x — AAz + v. De plus, si |z|. > R alors |f,(z)l. > pR — B.
Donc la suite est aussi équicontinue a 'infini, donc sur tout R" , et on a convergence vers
f dans R".

Dans ce second temps, on suppose que (A,), tend vers l'infini. On regarde également
deux cas. Dans le premier, on suppose que (|v,|e/An), tend vers I'infini. Dans ce cas, on
a|fu(z)]e = |vnle — Anlzle = JUnle(1 — (An/|Unle)|x|e) donc on a convergence uniforme sur
les compacts vers oo.

On suppose maintenant que (|v,]c/An)n est bornée par M. On note p, = f,1(0) =
(=1/X) A 0,. On a |pule = |vn|e/An < M. Du coup, & une sous-suite pres, (p,), est
convergente vers un point p € R". On a

|fn(x)|e = |fn(x) - fn(pn)|e = )‘n|x _pn|e > )\n<|x _p|e - |p _pn|e)-

Du coup, si |z —ple > R > 0 et |p, — ple < R/2, alors |f,(z)]e > A\R/2, donc on a
convergence uniforme sur les compacts de R \ {p} vers l'infini.

On a montré

PROPOSITION 3.19. — Soit F une famille de similitudes. Ou bien F est relativement
compacte en tant qu’homéomorphismes de ]IA%n, ou bien il existe une suite (f,), de F et
deuz points a,b € R" incluant le point a l'infini tels qu’on ait convergence uniforme sur
les compacts de R \ {a} vers b.

Normalisation des transformations de Mobius.— On associe a toute transformation
de Mo6bius une similitude qui nous permettra d’exploiter la proposition 3.19. On se place
dans S" et on marque un point oy € S™. Soit f € M6b(S™). On considere tout d’abord une
isométrie py € O, 41(R) telle que po(zg) = 0 = (0,,, —1). On considere aussi une isométrie
pr € Oni1(R) telle que pr(f(zo)) = o. Le choix des isométries reste dans un compact, et
cela nous suffira.

On pose Nf = pgpffpalpa, ol p, : S" — R" est la projection stéréographique. On a
N f(00) = oo done N f se restreint a une similitude de R".

THEOREME 3.20. — Soit F une famille de transformations de Mobius de S™. Ou bien F
est relativement compacte ou bien il existe une suite (f,), de F et deux points a,b € S"

tels qu’on ait convergence uniforme sur les compacts de R" \ {a} versb.

DEMONSTRATION. On considere N.F qui est une famille de similitudes de R"™. On applique
alors la proposition 3.19. Si NF est relativement compacte, alors, pour toute suite (f,,),
de F, il existe une sous-suite (fy, )i telle que (N f,, )x tend vers une similitude g. Du coup,
si on extrait une sous-suite pour que (py, ) soit convergente vers p € O,41(R) alors (fy, )
tend vers p~'p,gp,po. Donc F est relativement compacte.
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Sinon, il existe une suite (f,), de F et deux points a,b € R" incluant le point a I'infini
tels qu’on ait convergence uniforme sur les compacts de R\ {a} de (N f,),, vers b. Comme
ci-dessus, on suppose que (py, ), tend vers p. On a convergence uniforme de (f,,), sur les
compacts de S™ \ {popo(a)} vers p~1p,(b). ]

EXERCICE 3.21. — Soit F une famille de transformation de Mdébius de S™. On suppose
qu’il existe trois points distincts x1, xo et x3 de S™ et m > 0 tels que toutes paires de

points de { f(x1), f(x2), f(x3)} sont a distance au moins m pour toute f € F. Alors F est
relativement compacte.
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