
3. GÉOMÉTRIE CONFORME

Une transformation conforme f : (M1, g1) ! (M2, g2) entre deux variétés riemanniennes

est un di↵éomorphisme dont les applications tangentes sont toutes des similudes : pour

x 2 M1, il existe �x > 0 tel que g2(Txf(v), Txf(w)) = �xg1(v, w) pour tous v, w 2 TxM1.

Par géométrie conforme, on entend l’étude des propriétés des variétés qui sont invariantes

par transformations conformes.

On peut consulter [Thu, Cox, Spi].

3.1. Similitudes euclidiennes

On considère Rn, n � 1, muni de sa structure euclidienne canonique. On note le produit

scalaire de deux vecteurs x·y et la norme associée |x|e. Par définition, une similitude est une

transformation f : Rn ! R
n telle qu’il existe � > 0 qui vérifie |f(x)� f(y)|e = �|x� y|e.

Une isométrie est une application f : Rn ! R
n telle que |f(x) � f(y)|e = |x � y|e pour

tous x, y 2 R
n. On note Sim(Rn) le groupe des similitudes et Isom(Rn) son sous-groupe

des isométries.

On montre qu’une similitude est une application linéaire :

Théorème 3.1. — Une application f : Rn ! R
n est une similitude de rapport � > 0 si

et seulement si il existe A 2 On(R) et v 2 R
n tels que f(x) = �A · x + v. En particulier,

une isométrie s’écrit sous la forme x 7! A · x+ v

Démonstration. On laisse en exercice la vérification qu’une application de la forme

f(x) = �A · x+ v avec A 2 On(R) et v 2 R
n est une similitude.

Supposons que f est une similitude. Soient x, y, z 2 R
n 3 points alignés, on peut

supposer par exemple x 2 [y, z], de sorte qu’on ait |y� z|e = |y� x|e + |x� z|e. Du coup,

on obtient |f(y)�f(z)|e = �|y�z|e = �|y�x|e+�|x�z|e = |f(y)�f(x)|e+|f(x)�f(z)|e.
Par suite, on a f(x) 2 [f(y), f(z)], c’est-à-dire que f transforme une droite en une droite.

En outre, on en déduit aussi que si k 2 R, alors f(k(x � y)) = k(f(x) � f(y)). En

particulier, l’image du milieu de [y, z] s’envoie sur le milieu de [f(y), f(z)].

De manière plus générale, l’image d’un triangle est un triangle semblable. Prenons

trois points o, x, y et considérons z = o + (x � o) + (y � o) de sorte que oxzy est un

parallèlogramme. Par conséquent, les segments [o, z] et [x, y] se coupent en leur milieu. Il

vient que [f(o), f(z)] et [f(x), f(y)] se coupent aussi en leur milieu, donc l’image de oxzy

est aussi un parallèlogramme semblable impliquant que f(z) = f(o) + (f(x) � f(o)) +

(f(y)� f(o)).

On en déduit que f est a�ne. Comme f/� est une isométrie, une similitude est une

application de la forme x 7! �Ax+ v, � > 0, A 2 On(R) et v 2 R
n.

Exercice 3.2. — Montrer qu’on a Isom(Rn) ' R
n
nOn(R) et Sim(Rn) ' (R+\{0},⇥)n

On(R).
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Proposition 3.3. — Un homéomorphisme f : Rn ! R
n qui préserve l’ensemble des

hyperplans et des sphères est une similitude.

Démonstration. Notons g = f � f(0). Si f préserve les hyperplans de R
n alors f

préserve aussi leur parallèlisme. Il en de même de g. On en déduit que g préserve les

sous-espaces a�nes et leur parallèlisme aussi puisqu’on les obtient comme intersection

d’hyperplans.

On se fixe deux vecteurs x et y indépendants et l’on considère la construction du

parallèlogramme de leur somme : on regarde donc les droites Rx, Ry, x + Ry et y +

Rx. Leurs images sont aussi parallèles deux à deux, donc g(0, x, x + y, y) est aussi un

parallèlogramme et on en déduit que g(x+y) = g(x)+g(y). Par continuité, on a la même

relation pour x et y colinéaires. On en déduit facilement que g est linéaire. Comme g

préserve les sphères, c’est une similitude.

Réflexions.— Si p et p0 sont fixés, le lieu des points q équidistants est l’hyperplan a�ne

H qui coupe le segment [p, p0] orthogonalement en son milieu m. Si |p � q|e = |p0 � q|e
alors |(p�m) + (m� q)|2

e
= |(p0 �m) + (m� q)|2

e
. On obtient en développant

2((p�m) · (m� q)) = 2((p0 �m) · (m� q))

soit (p � p0) · (m � q) = 0. Réciproquement, si q 2 H, alors le théorème de Pythagore

implique |p� q|2
e
= |p�m|2

e
+ |m� q|2

e
= |p0 �m|2

e
+ |m� q|2

e
= |p0 � q|2

e
.

Etant donné un hyperplan a�ne H et m 2 H, on note rH : x 7! x� 2((x�m) · u)u où

u est un vecteur unitaire orthogonal à H. On vérifie que rH ne dépend pas ni du choix de

m ni celui de u. On appelle rH la réflexion orthogonale par rapport à H.

Fait 3.4. — Une réflexion est une involution isométrique qui fixe exactement et ponc-

tuellement H.

Démonstration. Si on conjugue par la translation de vecteur m, on arrive à rH(x) =

x� 2(x · u)u. On a pour p et q dans Rn,

rH(p) · rH(q) = p · q + 4(p · u)(q · u)� 2((p · u) · (u · q) + (q · u) · (p · u))

= p · q

donc rH est une isométrie.

Si p 2 H, alors rH(p) = p. Réciproquement, si rH(p) = p alors p · u = 0, donc p 2 H.

De plus, on a

(rH � rH)(p) = rH(p)� 2(rH(p) · u)u

= p� 2(p · u)u� 2((p · u)� 2(p · u))u

= p .
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Proposition 3.5. — Les points fixes d’une isométrie non triviale sont contenus dans un

hyperplan. Ils s’identifient à un hyperplan si et seulement si l’isométrie est une réflexion.

Démonstration. Soit g une isométrie non triviale. Si g(p) 6= p, et si q est un point fixe,

alors |p� q|e = |g(p)� g(q)|e = |g(p)� q|e. Donc q est dans l’hyperplan H médian défini

par {p, g(p)}. Si tous les points de H sont fixes, alors g � rH admet H [ {p} comme points

fixes. Donc g � rH est l’application identique et g = g � r2
H
= Id � rH = rH .

Exercice 3.6. — L’objet de cet exercice est de montrer que le groupe des isométries est

engendré par les réflexions.

(1) Soient k � 1, et (pj, qj)1jk des points tels que |pi � pj|e = |qi � qj|e pour tous i, j.

Montrer par récurrence sur k qu’il existe une isométrie g composée de réflexions

telle que g(pj) = qj pour tout j.

(2) Soient g une isométrie et (pj), 0  j  n, n + 1 points en position générale (ils ne

sont contenus dans aucun hyperplan). Montrer qu’il existe une isométrie h obtenue

par composition de réflexions telle que g(pj) = h(pj) pour tout j et en déduire que

g = h.

3.2. Inversions

On se place dans Rn+1 muni de sa structure euclidienne.

Définition 3.7 (Inversion). — Soit S ⇢ R
n+1 une sphère de dimension n de centre c et

de rayon R > 0. L’inversion par rapport à S est l’application IS : Rn+1 \{c} ! R
n+1 \{c}

définie par

IS(x) = c+
R2

|x� c|2
e

(x� c)

Géométriquement, IS(x) se trouve sur la demi-droite [c, x) tel que

|IS(x)� c|e|x� c|e = (IS(x)� c) · (x� c) = R2 .
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Prenons y un point de S. On a

(y � c) · (y � IS(x)) = (y � c) · ((y � c) + (c� IS(x)))

= |y � c|2
e
+ ((y � x) + (x� c)) · (c� IS(x))

= R2 + (y � x) · (c� IS(x)) + (x� c)) · (c� IS(x))

= R2 + (y � x) · (c� IS(x))�R2

donc (y � c) · (y � IS(x)) = (y � x) · (c � IS(x)). En particulier, la droite (y, IS(x)) est

tangente à S en y si et seulement si x est la projection orthogonale de y sur (c, x).

Proposition 3.8. — Soit IS l’inversion par rapport à une sphère S. On a les propriétés

suivantes.

(1) Une inversion est une involution qui fixe S ponctuellement.

(2) Les sphères invariantes di↵érentes de S sont celles qui coupent S orthogonalement.

(3) Les sphères et espaces a�nes sont préservés. Plus précisément,

(a) les sphères disjointes de c sont transformées en sphères ;

(b) les sphères passant par c sont transformées en espaces a�nes, et réciproquement ;

(c) les espaces a�nes passant par c sont invariants.

(4) La transformation est conforme.

On rappelle quelques propriétés élémentaires des cercles et des sphères qui permettent

d’établir cette proposition.

Lemme 3.9. — Soient S ⇢ R
n une sphère et o 2 R

n \ S. Il existe une constante K

telle que, pour toute droite passant par o qui coupe S en deux points (éventuellement

confondus) x et x0, on a (x� o) · (x0 � o) = K.

La constante K s’appelle la puissance du point o par rapport à la sphère S et vaut

|o� c|2 �R2.
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Démonstration. — On note ⇢ = |o � c|2 � R2. Si [p, p0] est un diamètre, alors (p � o) ·
(p0 � o) = ⇢. En e↵et,

(p� o) · (p0 � o) = ((p� c) + (c� o)) · ((p0 � c) + (c� o))

= �|p� c|2
e
+ |c� o|2

e

= ⇢ .

On suppose qu’une droite passant par o coupe S en deux points x, x0. Alors, notons y

le point diamètralement opposé de x. Le triangle (x, x0, y) est donc rectangle en x0, ce qui

implique (x� o) · (x0 � y) = 0.

(x� o) · (x0 � o) = (x� o) · ((x0 � y) + (y � o))

= (x� o) · (y � o)

= ⇢ .

⇤

Démonstration de la proposition 3.8. On vérifie sans mal le point (1). Afin d’étudier

l’image des sphères, on commence par l’observation suivante. Si S 0 est une sphère de di-

mension quelconque dans Rn, alors c’est l’intersection d’un sous-espace a�ne A passant

par c avec une sphère de dimension n de même centre et même rayon que S 0. Or, cet

espace contenant c, il est clairement invariant par IS ; de plus S \A est aussi une sphère,

de centre c et de rayon R. On se ramène ainsi à des sphères de même dimension.

Scholie 3.10. — Soit p /2 S [ {c}. Toute sphère S 0 qui contient p et IS(p) ( 6= p) est

invariante par IS et coupe S orthogonalement.

Démonstration. — Soit q 2 S 0 et notons q0 2 S 0 le second point d’intersection de la

droite (c, q) avec S 0 (éventuellement confondu à q). On note c0 le centre de S 0. Par le

lemme 3.9, on obtient

(c� q) · (c� q0) = (c� p) · (c� IS(p)) = R2

donc IS(q) = q0 (si p 2 S \ S 0, alors IS(p) = p, mais cela n’implique pas que p est le seul

point de S 0 \ [c, p) donc on n’aurait pas pu appliquer le lemme 3.9). De plus, si (c, q) est

tangente à S 0, alors q0 = q et IS(q) = q, donc q 2 S et (c, q) est orthogonale à (c0, q),

montrant que les sphères se coupent orthogonalement (ce sont des vecteurs normaux aux

sphères). ⇤

Prenons maintenant une sphère S 0 invariante par IS (donc disjointe de c car IS est définie

sur tout S) et di↵érente de S. Du coup, il existe un point p 2 S 0\S. Cette sphère vérifie les
hypothèses de la scholie et on en déduit que S et S 0 se coupent orthogonalement. Si S et

S 0 se coupent orthogonalement, prenons un point d’intersection q 2 S \S 0 et considérons
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deux points d’intersection p et p0 d’une droite passant par c et coupant S 0. On en déduit

par le lemme 3.9 (c� p) · (c� p0) = |c� q|2
e
= R2, donc IS(p) = p0. Cela signifie que S 0 est

invariante. Cela conclut la démonstration de (2).

Un sous-espace a�ne contenant c est clairement invariant. Soit H un espace a�ne ne

contenant pas c. Quitte à se restreindre au plus petit sous-espace a�ne contenant H et

c, on peut supposer que H est un hyperplan. On se fixe p 2 H qui réalise la distance de c

à H. Nous allons montrer que l’image de toute droite de H passant par p se transforme

en un cercle de diamètre [c, IS(p)]. Soit p0 un autre point. Puisque |c � p|e|c � IS(p)|e =
|c� p0|e|c� IS(p0)|e et les angles des triangles (c, p, p0) et (c, IS(p0), IS(p)) sont identiques
en c, ces triangles sont semblables. En particulier, le second triangle a un angle droit en

IS(p0) ce qui signifie qu’il est sur la sphère de diamètre [c, IS(p)]. Cet argument en sens

inverse montre qu’une sphère passant par c s’inverse en un hyperplan l’évitant.

Soit maintenant S 0 une sphère disjointe de c. On note K 0 la puissance de c par rapport

à S 0. On considère l’homothétie D de centre c et de rapport R2/K 0. Soient p, p0 deux

points de S 0 sur la même droite passant par c, et posons q = D(p0).

Le lemme 3.9 a�rme

(q � c) · (p� c) =
R2

K 0 (p
0 � c) · (p� c) = R2 .

Donc q = IS(p). De même, IS(p0) = D(p). On en déduit que IS(S 0) = D(S 0).

Montrons qu’une inversion est conforme. On peut se ramener en conjuguant notre

inversion par une similitude à la réflexion par rapport à la sphère unité. On considère

donc f(x) = x/|x|2
e
. Du coup, on a

Txf(v) =
v

|x|2
e

� 2(x · v)x
|x|4

e

.

On calcule

Txf(v) · Txf(v) =
|v|2

e

|x|4
e

� 4(x · v)2

|x|6
e

+
4(x · v)2|x|2

e

|x|8
e

=
|v|2

e

|x|4
e

.

Par suite, f transforme la métrique euclidienne en une métrique qui lui est conforme.

Exercice 3.11. — Montrer que la composée de deux inversions par rapport à des sphères

concentriques est une similitude. Etudier la réciproque.

Proposition 3.12. — Soit S une sphère de R
n+1, n � 1.

(1) Soit S 0 une autre sphère.

(a) Si S 0 ne contient pas le centre de S, alors IS � IS0 � IS est l’inversion par rapport

à IS(S 0).

(b) Si S 0 contient le centre de S, alors IS � IS0 � IS est la réflexion par rapport à

l’hyperplan a�ne IS(S 0).
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(2) Soit H un hyperplan a�ne.

(a) Si H ne contient pas le centre de S, alors IS � rH � IS est l’inversion par rapport

à IS(H).

(b) Si H contient le centre de S, alors IS � rH � IS = rH .

Démonstration. On note c et R le centre et rayon de S, c0 et R0 ceux de S 0.

Si c = c0, alors, pour tout p 6= c, les points c, p, IS(p), IS0IS(p) et ISIS0IS(p) sont alignés

donc la loi d’addition entre vecteurs et leurs produits scalaires s’identifient à des sommes

et multiplications de réels positifs, donnés par leur distance à c. Avec cette identification,

on a

(p� c) · (ISIS0IS(p)� c) =
[(p� c) · (IS(p)� c)][(IS0IS(p)� c) · (ISIS0IS(p)� c)]

(IS(p)� c) · (IS0IS(p)� c)

=
R2

R0 .

On en déduit une inversion de centre c et de rayon R2/R0.

On suppose maintenant c 6= c0. On vérifie sans mal que ISIS0IS est une involution

conforme qui fixe ponctuellement IS(S 0 \ {c}). Supposons aussi que c n’est pas sur S 0. Du

coup, S 00 = IS(S 0) est une sphère de centre un point c00 sur la droite (c, c0). On montre

ISIS0IS = IS00 sur R
n \ {c, IS(c0), ISIS0(c), c00}. Soit p 2 R

n \ {c, IS(c0), ISIS0(c), c00}. On

suppose aussi p /2 S 00 puisqu’on sait ISIS0IS|S00 = Id|S00 = IS00 |S00 . Soit T la sphère de

diamètre [p, IS00(p)] qui intersecte donc S 00 et la droite (c00, p) orthogonalement. On a donc

(c00, p) \ T = {p, IS00(p)}. Pour p générique, le point c n’est pas sur T ni sur (c00, p).

Du coup, IS(T ) est une sphère qui coupe S 0 orthogonalement et IS((c00, p)) est un cercle

qui coupe également S 0 orthogonalement. Par suite, IS(T ) et IS((c00, p)) sont invariants

par IS0 . On en déduit que ISIS0IS laisse T et (c00, p) invariants, donc leur intersection

{p, IS00(p)}. Comme cette transformation ne fixe pas p, on a ISIS0IS(p) = IS00(p). Comme

p est générique et IS00 est continue en dehors de {c00}, on a ISIS0IS = IS00 sur leur ensemble

de définition.

On suppose maintenant c 2 S 0. Par conséquent, H = IS(S 0 \ {c}) est un hyperplan

a�ne. Comme ci-dessus, on montre ISIS0IS = rH sur R
n \ {c, IS(c0), ISIS0(c)}. Soit p 2

R
n \ {c, IS(c0), ISIS0(c)}. Soit T la sphère de diamètre [p, rH(p)] qui intersecte donc H et

la droite (p, rH(p)) orthogonalement. On a (p, rH(p))\ T = {p, rH(p)}. Pour p générique,

le point c n’est pas sur T ni sur (p, rH(p)). Du coup, IS(T ) est une sphère qui coupe S 0

orthogonalement et IS((p, rH(p))) est un cercle qui coupe également S 0 orthogonalement.

Par suite, IS(T ) et IS((p, rH(p))) sont invariants par IS0 . On en déduit que ISIS0IS laisse

T et (p, rH(p)) invariants. Comme cette transformation ne fixe pas p, on a ISIS0IS(p) =

rH(p). Comme p est générique et rH est continue, on a ISIS0IS = rH sur leur ensemble de

définition. On a ainsi analysé la conjugaison d’une inversion par une autre.

On se donne maintenant un hyperplan a�ne H et on veut déterminer IS � rH � IS. On

vérifie comme ci-dessus que cette transformation fixe IS(H). On suppose dans un premier
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temps que c 2 H de sorte que IS(H \ {c}) = H \ {c}. Soit p /2 H, comme rH est une

isométrie, on a

(p� c) · (rHISrH(p)� c) = (rH(p)� c) · (ISrH(p)� c) = R2 .

De plus, comme IS préserve les demi-droites issues de c, on a (modulo le point c)

rH(ISrH([c, p))) = rH(rH([c, p))) = [c, p)

donc rH � IS � rH = IS et IS � rH � IS = rH .

On suppose finalement c /2 H de sorte que S 0 = IS(H) [ {c} est une sphère contenant

c, invariante par ISrHIS. On note c0 son centre. Soit p /2 S 0. On considère la sphère T de

diamètre [p, IS0(p)] qui coupe donc orthogonalement S 0 et la droite (p, IS0(p)) = (c0, p). On

a aussi (c0, p) \ T = {p, IS0(p)}. Pour p générique, le point c n’est pas sur T ni sur (c0, p).

Du coup, IS(T ) est une sphère qui coupe H orthogonalement et IS((c0, p)) est un cercle

qui coupe également H orthogonalement. Par suite, IS(T ) et IS((c0, p)) sont invariants par

rH . On en déduit que ISrHIS laisse T et (c0, p) invariants. Comme cette transformation ne

fixe pas p, on a ISrHIS(p) = IS0(p). Comme p est générique et IS0 est continue en dehors

de {c0}, on a ISrHIS = IS0 sur leur ensemble de définition.

Exercice 3.13. — Déterminer l’élément conjugé d’une réflexion ou d’une inversion par

une similitude.

3.3. Espace étendu

Soit n � 1. On considère la compactification d’Alexandro↵ bR
n

= R
n[{1} munie de la

topologie telle que l’injection canonique Rn ,! bR
n

est continue et un système de voisinage

du point à l’infini est donné par les complémentaires des compacts de R
n.

Toute réflexion rH de R
n se prolonge en homéomorphisme de bR

n

en posant rH(1) =

1 et toute inversion IS par rapport à une sphère de centre c se prolonge aussi en

homéomorphisme de bR
n

en posant IS(c) = 1 et IS(1) = c.

La projection stéréographique nous permettra de munir bR
n

d’une structure rieman-

nienne conformément équivalente à la sphère unité S
n.

3.3.1. Projection stéréographique. On identifie R
n à R

n ⇥ {0} ⇢ R
n+1 et on considère la

sphère S de centre o = (0n,�1) et de rayon
p
2. La projection stéréographique de S

n sur

R
n est la restriction de IS. Puisque Sn contient le centre de S, son image est un hyperplan

a�ne. Il contient les points de S \ S
n, soit Sn�1 ⇥ {0}. On a bien IS : Sn \ {o} ! R

n. On

note p� : S
n \ {o, } ! R

n la projection stéréographique.

La projection stéréographique se prolonge à p� : (bR
n+1

, Sn) ! (bR
n+1

, bR
n

), ce qui permet

de munir bR
n

d’une structure conforme héritée de S
n.

Fait 3.14. — Toute réflexion ou inversion de R
n se prolonge en une transformation

conforme de bR
n

.
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Démonstration. Avec l’identification de R
n à R

n ⇥ {0} ⇢ R
n+1, toute réflexion de R

n

est la restriction d’une réflexion de Rn+1 par rapport à un hyperplan de Rn+1 orthogonal

à R
n et toute inversion est la restriction d’une inversion de R

n+1 par rapport à une

sphère de même centre et de même rayon. L’image de cet hyperplan ou de cette sphère

de bR
n+1

par p� est un hyperplan ou une sphère qui coupe S
n orthogonalement d’après la

proposition 3.8. Observons que le centre de cette sphère est disjoint de Sn. La proposition

3.12 implique que la transformation conjuguée sur Sn par p� est donc la restriction d’une

réflexion ou inversion qui laisse invariante Sn, bien définie en tout point. Cela montre que

ces transformations sont conformes sur bR
n

.

Par extension, on appelle sphère de Möbius de bR
n

une sphère de R
n, ou un hyperplan

a�ne H [{1}. Du coup, l’inversion ou la réflexion par rapport à une sphère (de Möbius)

donnée préserve les sphères (de Möbius).

3.3.2. Groupe de Möbius. On définit le birapport de quatre points distincts x1, x2, x3, x4

de R
n par

[x1 : x2 : x3 : x4] =
|x1 � x2|e|x3 � x4|e
|x1 � x3|e|x2 � x4|e

.

On le prolonge à bR
n

en passant à la limite quand un point va vers l’infini. Supposons par

exemple que l’on fait tendre x4 vers l’infini. On a

|x2 � x4|e  |x3 � x4|e + |x2 � x3|e = |x3 � x4|e
✓
1 +

|x2 � x3|e
|x3 � x4|e

◆

et

|x2 � x4|e � |x3 � x4|e � |x2 � x3|e = |x3 � x4|e
✓
1� |x2 � x3|e

|x3 � x4|e

◆
.

Par conséquent

lim
x4!1

[x1 : x2 : x3 : x4] =
|x1 � x2|e
|x1 � x3|e

.

Théorème 3.15. — Soit f : bR
n

! bR
n

un homéomorphisme. Les propriétés suivantes

sont équivalentes.

(1) L’homéomorphisme f est un produit de réflexions.

(2) L’homéomorphisme f préserve les sphères.

(3) L’homéomorphisme f préserve le birapport.

Si f vérifie l’une de ces propriétés, alors f est conforme.

Un homéomorphisme qui vérifie les conditions de ce théorème est une transformation

de Möbius. Ces transformations forment le groupe de Möbius Möb(bR
n

). Ce sont en fait

les seules transformations conformes dès la dimension 3.

Théorème 3.16 (Liouville). — Un homéomorphisme conforme f : U ! f(U) (⇢ bR
n

)

d’un ouvert U de bR
n

, n � 3, est la restriction d’une transformation de Möbius.
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Démonstration du théorème 3.15. On remarque que le groupe engendré par les

inversions vérifie toutes ces propriétés. La préservation des sphères est donnée par la pro-

position 3.8 et parce que les réflexions sont des isométries euclidiennes. La seule propriété

non triviale est la préservation du birapport par une inversion. Il su�t de traiter le cas

de I(x) = x/|x|2
e
. Rappelons que, pour tout x 2 R

n \ {0}, on a |TxI(v)|e = |v|e/|x|2e,
donc Txf est une similitude de rapport 1/|x|e ; on pose |I 0(x)| = 1/|x|2

e
de sorte que

|TxI(v)|e = |I 0(x)| · |v|e. On montre que pour tous x, y 2 R
n, on a

|I 0(x)| · |I 0(y)| · |x� y|2
e
= |I(x)� I(y)|2

e
.

Par le calcul,

|I(x)� I(y)|2
e

= ((I(x)� I(y)) · (I(x)� I(y)))

= (I(x) · I(x)) + (I(y) · I(y))� 2(I(x) · I(y))

=
1

|x|2
e

+
1

|y|2
e

� 2(x · y)
|x|2

e
· |y|2

e

=
(x · x)� 2(x · y) + (y · y)

|x|2
e
· |y|2

e

= |I 0(x)| · |I 0(y)| · |x� y|2
e

On en déduit maintenant la préservation du birapport.

Soit f un homéomorphisme de bR
n

. Si f(1) 6= 1, on note a = f�1(1), et on considère

l’inversion I par rapport à une sphère centrée en a, sinon, on appelle I l’application iden-

tique. On définit enfin la transformation g : x 7! I � f(x)� I � f(0). Cette transformation

vérifie g(0) = 0 et g(1) = 1.

Supposons que f préserve les birapports de quatre points. On traduit cette condition

en considérant 0, x, y,1 :

|g(x)|e
|g(y)|e

=
|x|e
|y|e

.

Notons � = |g(x)|e/|x|e de sorte que |g(y)|e = �|y|e pour tout y 2 R
n. Par ailleurs, en

prenant (x, y, 0,1), on trouve

|g(x)� g(y)|e
|g(x)|e

=
|x� y|e
|x|e

donc |g(x) � g(y)|e = �|x � y|e. Par suite, l’application g est une similitude, donc f est

un produit d’inversions de Möbius.

Si f préserve les sphères de Möbius de bR
n

, alors g préserve les hyperplans de R
n et les

sphères. Du coup, la proposition 3.3 implique que g est une similitude.

Exercice 3.17. — Montrer que le stabilisateur d’un point de bR
n

dans le groupe de Möbius

est conjugué au groupe des similitudes de R
n.
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3.3.3. Extension des transformations de Möbius. Soit n � 1 fixé. Toute réflexion IS :
bR
n

! bR
n

par rapport à une sphère S ⇢ bR
n

se prolonge de manière canonique en une

réflexion IbS : bR
n+1

! bR
n+1

par rapport à la sphère bS ⇢ bR
n+1

de même centre et même

rayon que S. Du coup, toute transformation de Möbius de bR
n

est la restriction d’une

transformation de Möbius de bR
n+1

.

Si f et g cöıncident sur bR
n

alors h = f � g�1 est une transformation de Möbius de
bR
n+1

qui vaut l’identité sur bR
n

. Par conséquent, h fixe le point à l’infini donc h est

une isométrie de R
n+1 qui fixe un hyperplan. D’après la proposition 3.5, h est ou bien

l’application identique ou bien la réflexion par rapport à R
n. En notant stabMöb(bR

n

) le

sous-groupe de Möb(bR
n+1

) qui laisse invariant bR
n

, on obtient la suite exacte courte

1 ! Z/2Z ! stabMöb(bR
n

) ! Möb(bR
n

) ! 1

où l’involution est donnée par la réflexion ⇢ par rapport à bR
n

. Comme ⇢|c
R

n = Id, ⇢ est

dans le centralisateur de stabMöb(bR
n

). La suite est scindée puisque toute inversion de
bR
n

est la restriction d’une inversion de bR
n+1

qui préserve le demi-espace supérieur. Cette

extension induit une section s : Möb(bR
n

) ! stabMöb(bR
n

) dont l’image commute avec ⇢.

On a ainsi montré Möb(bR
n

)⇥ Z/2Z ' stabMöb(bR
n

).

En conjuguant par la projection stéréographique et en notant Möb(B) le sous-groupe

des transformations de Möbius qui préserve la boule unité de R
n+1, on obtient

Proposition 3.18. — La restriction de l’action de Möb(B) à S
n induit un isomorphisme

entre Möb(B) et Möb(Sn). Ils sont engendrés par les inversions par rapport à des sphères

de Möbius qui coupent S
n orthogonalement. En outre, prenons des transformations de

Möbius f, g, h : bR
n+1

! bR
n+1

qui préservent B. Si h�f �h�1|Sn = g|Sn alors h�f �h�1 = g.

Démonstration. La transformation de Möbius h � f � h�1 � g�1 vaut l’identité sur Sn

et fixe la boule unité. Par conséquent, h � f � h�1 � g�1 est l’application identique.

3.4. Propriétés de convergence

On étudie dans ce paragraphe le comportement des suites de transformations de Möbius.

On commence par le cas des similitudes. On considère une suite (fn)n de similitudes de

R
n définies par fn(x) = �nAn + vn, avec �n > 0, An 2 On(R) et vn 2 R

n. On considère

plusieurs cas qui peuvent être obtenus par extraction de sous-suites.

On suppose dans un premier temps que (�n)n est bornée par ⇤. Du coup, (fn)n est

équicontinue. Si (vn) n’est pas bornée, quitte à extraire une sous-suite, la suite tend vers

l’infini et, pour tout x 2 R
n, on a |fn(x)|e � |vn|e � ⇤|x|e donc (fn) tend uniformément

sur les compacts vers l’infini.

Si (vn)n est bornée par B � 0, alors on a deux cas : ou bien (�n)n tend vers 0 —

à une sous-suite près— et on a convergence vers une constante —à une sous-suite près
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également ; ou bien on a �n � µ > 0. Quitte à extraire une sous-suite, on a donc conver-

gence de (�n)n vers � > 0, de (An)n vers A et (vn)n vers v. Dans ce cas, on a convergence

sur les compacts vers f : x 7! �Ax + v. De plus, si |x|e � R alors |fn(x)|e � µR � B.

Donc la suite est aussi équicontinue à l’infini, donc sur tout bR
n

, et on a convergence vers

f dans bR
n

.

Dans ce second temps, on suppose que (�n)n tend vers l’infini. On regarde également

deux cas. Dans le premier, on suppose que (|vn|e/�n)n tend vers l’infini. Dans ce cas, on

a |fn(x)|e � |vn|e � �n|x|e � |vn|e(1� (�n/|vn|e)|x|e) donc on a convergence uniforme sur

les compacts vers 1.

On suppose maintenant que (|vn|e/�n)n est bornée par M . On note pn = f�1
n

(0) =

(�1/�n)A�1
n
vn. On a |pn|e = |vn|e/�n  M . Du coup, à une sous-suite près, (pn)n est

convergente vers un point p 2 R
n. On a

|fn(x)|e = |fn(x)� fn(pn)|e = �n|x� pn|e � �n(|x� p|e � |p� pn|e) .

Du coup, si |x � p|e � R > 0 et |pn � p|e  R/2, alors |fn(x)|e � �nR/2, donc on a

convergence uniforme sur les compacts de bR
n

\ {p} vers l’infini.

On a montré

Proposition 3.19. — Soit F une famille de similitudes. Ou bien F est relativement

compacte en tant qu’homéomorphismes de bR
n

, ou bien il existe une suite (fn)n de F et

deux points a, b 2 bR
n

incluant le point à l’infini tels qu’on ait convergence uniforme sur

les compacts de bR
n

\ {a} vers b.

Normalisation des transformations de Möbius.—On associe à toute transformation

de Möbius une similitude qui nous permettra d’exploiter la proposition 3.19. On se place

dans Sn et on marque un point x0 2 S
n. Soit f 2 Möb(Sn). On considère tout d’abord une

isométrie ⇢0 2 On+1(R) telle que ⇢0(x0) = o = (0n,�1). On considère aussi une isométrie

⇢f 2 On+1(R) telle que ⇢f (f(x0)) = o. Le choix des isométries reste dans un compact, et

cela nous su�ra.

On pose Nf = p�⇢ff⇢
�1
0 p�, où p� : Sn ! bR

n

est la projection stéréographique. On a

Nf(1) = 1 donc Nf se restreint à une similitude de R
n.

Théorème 3.20. — Soit F une famille de transformations de Möbius de S
n. Ou bien F

est relativement compacte ou bien il existe une suite (fn)n de F et deux points a, b 2 S
n

tels qu’on ait convergence uniforme sur les compacts de bR
n

\ {a} vers b.

Démonstration. On considère NF qui est une famille de similitudes de Rn. On applique

alors la proposition 3.19. Si NF est relativement compacte, alors, pour toute suite (fn)n
de F , il existe une sous-suite (fnk

)k telle que (Nfnk
)k tend vers une similitude g. Du coup,

si on extrait une sous-suite pour que (⇢fnk
)k soit convergente vers ⇢ 2 On+1(R) alors (fnk

)k
tend vers ⇢�1p�gp�⇢0. Donc F est relativement compacte.
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Sinon, il existe une suite (fn)n de F et deux points a, b 2 bR
n

incluant le point à l’infini

tels qu’on ait convergence uniforme sur les compacts de bR
n

\{a} de (Nfn)n vers b. Comme

ci-dessus, on suppose que (⇢fn)n tend vers ⇢. On a convergence uniforme de (fn)n sur les

compacts de S
n \ {⇢0p�(a)} vers ⇢�1p�(b).

Exercice 3.21. — Soit F une famille de transformation de Möbius de S
n. On suppose

qu’il existe trois points distincts x1, x2 et x3 de S
n et m > 0 tels que toutes paires de

points de {f(x1), f(x2), f(x3)} sont à distance au moins m pour toute f 2 F . Alors F est

relativement compacte.
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