
2. ACTIONS GÉOMÉTRIQUES, QUASI-ISOMÉTRIES

Ce chapitre introduit les objets de base de la géométrie des groupes. Il s’agit d’étudier

les groupes par des méthodes topologiques et géométriques, à travers ses actions sur

di↵érents espaces. En particulier, on montre qu’un groupe de type fini dénombrable porte

une géométrie bien définie à quasi-isométries près. Un de ces aspects est de considérer un

groupe comme un objet géométrique.

Suivant F.Klein, une géométrie est donnée par un ensemble X et un groupe de trans-

formations G de X i.e., un sous-groupe G des bijections de X. On peut par exemple

étudier un espace vectoriel E muni du groupe linéaire GL(E), un espace a�ne euclidien

muni du groupe de ses isométries, etc. On étudie alors les ⌧ êtres au point de vue des

propriétés qui ne sont pas altérées par les transformations du groupe � [Kle]. Dans le

premier exemple, il s’agit des sous-espaces vectoriels, des applications linéaires, etc. Dans

le second, cela comprend aussi la notion d’orthogonalité, de distances à des sous-espaces

a�nes, etc.

L’objet principal de la géométrie est donc de développer la théorie des invariants relatifs

à ce groupe. De manière générale, deux géométries (X1, G1) et (X2, G2) sont équivalentes

s’il existe une bijection b : X1 ! X2 qui conjugue les groupes G1 et G2 :

G2 = {b � g � b�1, g 2 G1} .

D’une certaine manière, le programme d’Erlangen de F. Klein défend la thèse selon

laquelle la géométrie se ramène à l’étude des groupes qui préservent les structures ajoutées.

La théorie géométrique des groupes adopte le point de vue inverse : on étudie un groupe

en considérant les di↵érentes actions qu’il admet sur des espaces géométriques, voire

topologiques. On tire les propriétés algébriques du groupe en appliquant des méthodes

géométriques. Cette méthode remonte aux travaux de M.Dehn, et a été systématiquement

appliquée par M.Gromov, avec des résultats spectaculaires.

Rappelons qu’une action d’un groupe G sur un ensemble X est donnée par un mor-

phisme de groupes

⇢ : G ! Bij (X) .

Le point de départ sont les graphes de Cayley associés à des systèmes de générateurs

finis. Cela munit le groupe d’une géométrie. Puis on s’intéresse à ses actions sur des

espaces métriques par isométries avec pour point d’orgue le lemme fondamental de la

théorie géométrique des groupes qui relie un groupe à la géométrie de l’espace sur lequel

il opère. On conclut ce chapitre par des propriétés des quasi-isométries. On fixe tout

d’abord du vocabulaire pour la suite.

2.1. Notions de géométrie métrique

Dans tout ce paragraphe, (X, d) désigne un espace métrique.
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On dit que X est propre si, pour tout x0 2 X, la fonction x 2 X 7! d(x0, x) est propre,

autrement dit les boules fermées de rayon fini sont compactes, ou encore, les fermés bornés

sont compacts.

Une courbe (paramétrée) ou un chemin dans X est une application continue � : I ! X

où I est un intervalle de R. On peut, comme dans les espaces euclidiens et lorsque I est

compact, définir la longueur de � par

`(�) = sup
X

0j<n

d(�(tj), �(tj+1))

où le supremum est pris sur toutes les subdivisions (tj)0jn de I telles que [t0, tn] = I.

Si I n’est pas compact, alors on définit `(�) = sup
J⇢I

`(�|J), où le supremum est pris sur

les intervalles compacts de I. Si cette longueur `(�) est finie, on dira que la courbe est

rectifiable.

Un chemin � : I ! X est géodésique si, pour tous s, t 2 I, on a d(�(t), �(s)) = |t� s|.
On dit que �, ou �(I), est une géodésique si I = R, un rayon (géodésique) si I = R+ et

un segment (géodésique) si I est un intervalle compact.

Un segment géodésique d’extrémités x et y sera noté [x, y], même s’il n’est pas unique.

Définition 2.1 (Espace de longueur). — Un espace métrique (X, d) est un espace de

longueur si, pour tous x, y 2 X,

d(x, y) = inf `(�)

où l’infimum est pris sur tous les chemins � : [0, 1] ! X d’extrémités x et y i.e., tels que

�(0) = x et �(1) = y.

On dit que X est géodésique si toute paire de points {x, y} est jointe par un segment

géodésique (qui n’est pas forcément unique). Un espace géodésique est donc un espace de

longueur. La réciproque est vraie si X est propre :

Exercice 2.2. — Montrer que si X est un espace de longueur propre, alors X est

géodésique.

2.2. Groupes de type fini, graphes de Cayley

Un groupe G est de type fini s’il est finiment engendré. Autrement dit, il existe un

ensemble fini S ⇢ G tel que, pour tout g 2 G, il existe s1, . . . , sk 2 S tels que

g = s1s2 . . . sk .

Dans ce paragraphe, on montre comment associer un espace métrique à un groupe de

type fini muni d’une action de ce groupe. On présente d’abord une famille de groupes qui

jouent un rôle particulier dans la théorie.
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2.2.1. Groupes libres. Soit A un ensemble, que l’on appelle alphabet et ses éléments lettres.

On définit formellement A�1 en écrivant a�1 pour a 2 A. Un mot est un élément de

A⇤ = [n�0(A[A�1)n, où A0 = {;}. En général, on écrit un mot (a1, . . . , an) sous la forme

a1a2 . . . an ; p. ex. a1a22a
�1
1 a3 si A = {a1, a2, . . . , an}, n � 3.

On munit A⇤ de la loi de composition interne définie par concaténation : sim1,m2 2 A⇤,

alors on construit m1m2 2 A⇤. On vérifie que cette loi est associative d’élément neutre le

mot vide ;.
On définit la relation d’équivalence sur les mots engendrée par les relationsm1aa�1m2 ⇠

m1m2 et m1a�1am2 ⇠ m1m2, où m1,m2 2 A⇤ et a 2 A. Un mot qui ne contient aucun

sous-mot de la forme m1aa�1m2 ou m1a�1am2 s’appelle un mot réduit.

Exercice 2.3. — Soit A un ensemble. Montrer que tout mot de A⇤ admet un unique

représentant réduit.

Le groupe libre F(A) d’alphabet A est A⇤/ ⇠ muni de la concaténation.

Exercice 2.4. — Le but de cet exercice est de montrer que F(A) et F(B) sont isomorphes

si et seulement si A et B ont même cardinal.

(1) Soit N(A) le sous-groupe de F(A) engendré par les carrés g2 de F(A). Montrer que

N(A) est distingué dans F(A).

(2) Montrer que F(A)/N(A) est isomorphe à (Z/2Z)A et que ce quotient a une structure

naturelle d’espace vectoriel sur Z/2Z.

(3) En déduire que F(A) et F(B) sont isomorphes si et seulement si A et B ont même

cardinal.

Si n � 1, on désigne par Fn le groupe libre sur n lettres. Si n = 1, alors F1 est isomorphe

à Z. Plus généralement, Fn est isomorphe au groupe fondamental d’un bouquet de n cercles

i.e, la réunion disjointe de n cercles marqués (S1, aj), 1  j  n, où on identifie les points

aj.

Exercice 2.5. — Soiten G un groupe et S un système de générateurs fini. On définit

l’application ⇡ : F(S) ! G qui à un mot s1 . . . sk 2 S⇤ associe l’élément du groupe

g = s1 . . . sk 2 G.

(1) Montrer que ⇡ est un morphisme de groupes.

(2) Montrer que G est isomorphe à F(S)/ ker ⇡.

2.2.2. Graphes de Cayley. Soit (G,S) un groupe de type fini muni d’un système de

générateurs S symétrique (s 2 S implique s�1 2 S). On définit |g|S comme le nombre

minimal de lettres de S nécessaires pour écrire g en les générateurs de S. On définit la

métrique des mots sur G associée à S en posant dS(g, g0) = |g�1g0|S. On vérifie facilement

que dS(gx, gy) = dS(x, y) pour tous g, x, y 2 G.
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On appelle graphe un espace topologique � obtenu à partir d’un ensemble A = �(1)

de copies de l’intervalle [0, 1] en identifiant des extrémités. Le graphe � est fini si A est

fini. On appelle arête chaque élément de A. Une arête a deux extrémités éventuellement

confondues dans �, les éléments de l’ensemble S = �(0) de points du graphe ainsi obtenus

sont appelés les sommets de �.

Si G est de type fini et S est une famille finie et symétrique de générateurs de G, on peut

considérer le graphe de Cayley G associé à S : les sommets sont les éléments du groupe,

et on joint une paire (g, g0) 2 G ⇥ G par une arête étiquetée par s 2 S si g�1g0 = s.

On oriente l’arête dans le sens (g, gs), de sorte que si on lit un chemin orienté d’arêtes

en partant de l’élément neutre e que l’on retranscrit de la gauche vers la droite, alors on

obtient une écriture de l’autre extrémité g en les générateurs de S. En particulier, une

boucle dans G issue de e est une écriture de l’élément neutre. Par conséquent, si A est

fini et que l’on considère le graphe de Cayley de F(A) en prenant comme générateurs les

a, a�1, a 2 A, on obtient un graphe sans boucle, donc un arbre, car les éléments de F(A)

sont en bijection avec les mots réduits de A⇤.

En munissant G de la métrique de longueur qui rend chaque arête isométrique au

segment [0, 1], on obtient la métrique des mots associée à S sur les sommets. Elle fait de

G un espace géodésique et propre, et l’action de G sur lui-même par translations à gauche

induit une action libre sur G.

Exemple : le groupe libre.— Voici le graphe de Cayley du groupe libre à deux

générateurs avec les générateurs standard.

Exemple.— Si G = Z, on peut prendre le système de générateurs {1,�1}. On obtient

ainsi une droite. Mais si on prend {2, 3, (�2), (�3)}, alors le graphe est di↵érent.
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Exemple.— Si G = Z
2, on peut prendre le système de générateurs {(±1, 0), (0,±1)}.

On obtient ainsi un pavage par carré du plan.

On commence par une proposition qui montre que toutes les actions sur les graphes de

Cayley localement finis sont semblables.

Proposition 2.6. — Soit G un groupe de type fini. Si S et S 0 sont deux systèmes de

générateurs finis, alors Id : (G, dS) ! (G, dS0) est bilipschitzienne : il existe une constante

L � 1 telle que, pour tous g, g0 2 G,

1

L
dS(g, g

0)  dS0(g, g0)  LdS(g, g
0) .

Démonstration. On considère l’application Id : (G, dS) ! (G, dS0). Si g1, g2 2 G alors

on a dS(g1, g2) = |g�1
1 g2|S et dS0(g1, g2) = |g�1

1 g2|S0 . Si |g�1
1 g2|S = m alors |g�1

1 g2|S0  ` ·m
où ` = max{|s|S0 , s 2 S}, impliquant ainsi dS0(g1, g2)  `dS(g1, g2). Par symétrie, on

obtient dS(g1, g2)  `0dS0(g1, g2), avec `0 = max{|s0|S, s0 2 S 0}. On conclut avec L =

max{`, `0}.

2.3. Le lemme fondamental de la théorie géométrique des groupes

Soit (X, d) un espace métrique propre. On suppose maintenant queG opère par homéomorphismes

sur X, autrement dit, on a un morphisme ⇢ : G ! Homéo(X).

Définition 2.7 (Action géométrique). — Un groupe G opère géométriquement sur un

espace métrique propre X si

(1) chaque élément opère par isométrie : pour tous x, y 2 X et tout g 2 G,

d(g(x), g(y)) = d(x, y) ;

(2) l’action est proprement discontinue : pour tous compacts K et L de X,

{g 2 G, g(K) \ L 6= ;}

est fini ;

(3) l’action est cocompacte : il existe un compact K tel que X = [g2Gg(K).
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Exercice 2.8. — Soit M une variété riemannienne compacte. Montrer que l’action de

⇡1(M) sur son revêtement universel est géométrique.

Le lemme suivant généralise la proposition 2.6. Il illustre notamment le fait que l’exis-

tence d’une ⌧ bonne � action permet d’obtenir une propriété algébrique du groupe — ici

le fait d’être de type fini.

Lemme 2.9 (Švarc-Milnor). — Soient X un espace géodésique et propre, et G un groupe

qui opère géométriquement sur X. Alors G est de type fini. De plus, si S est un système

de générateurs fini et x 2 X, alors l’application f : g 2 G 7! g(x) vérifie les propriétés

suivantes. Il existe deux constantes � � 1, c � 0 telles que

1

�
dS(g, g

0)� c  dX(g(x), g
0(x))  �dS(g, g

0) + c.

et X ⇢ [g2GBX(g(x), c).

Ce lemme montre qu’un groupe qui opère géométriquement sur un espace géodésique

X ⌧ ressemble �, à grande échelle, à X. Cette observation est une clef de la théorie

géométrique des groupes et motive la définition suivante introduite sous cette forme par

G.Margulis [Mar].

Définition 2.10 (Quasi-isométrie). — Soient X, Y des espaces métriques, et � � 1,

c � 0 deux constantes. Une application f : X ! Y est un plongement (�, c)-quasi-

isométrique si, pour tous x, x0 2 X, on a

(1)
1

�
dX(x, x

0)� c  dY (f(x), f(x
0))  �dX(x, x

0) + c.

On dit que f est une (�, c)-quasi-isométrie s’il existe g : Y ! X qui vérifie aussi (1) et

telle que, pour tout x 2 X, dX(g(f(x)), x)  c et, pour tout y 2 Y , dY (f(g(y)), y)  c.

Exercice 2.11. — Montrer que f : X ! Y est une quasi-isométrie si et seulement si f

est un plongement quasi-isométrique et si f(X) est coborné, c.à.d. s’il existe une constante

c > 0 tel que, pour tout y 2 Y , dY (y, f(X))  c.

Corollaire 2.12. — Soit M une variété riemannienne connexe et compacte. Son groupe

fondamental ⇡1(M) est quasi-isométrique à son revêtement universel fM .

Démonstration. L’action de ⇡1(M) sur fM est géométrique donc le lemme de Švarc-

Milnor s’applique.

Démonstration du lemme 2.9. SoitK ⇢ X un compact tel que G(K) = X, et prenons

w 2 X et D > 0 pour que K ⇢ B(w,D/3). On note

S = {g 2 G, g(B(w,D)) \ B(w,D) 6= ;} .
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Puisque X est propre et l’action est proprement discontinue, S est fini (et non vide,

puisque e 2 S). Nous allons montrer que S engendre G.

Soit g 2 G, et considérons un segment � : [0, 1] ! X avec �([0, 1]) = [w, g(w)]. On se

donne une subdivision (tj)0jn de [0, 1] telle que t0 = 0, tn = 1 et d(�(tj), �(tj+1)) = D/3,

pour j < n � 1. Pour chaque 0 < j < n, il existe gj 2 G tel que d(�(tj), gj(w))  D/3 ;

on pose g0 = Id et gn = g.

Du coup,

d(gj(w), gj+1(w))  d(gj(w), �(tj)) + d(�(tj), �(tj+1)) + d(�(tj+1), gj+1(w)) < D .

Par conséquent d((g�1
j

� gj+1)(w), w) < D et (g�1
j

� gj+1) 2 S. En particulier,

g = g0 � (g�1
0 � g1) . . . (g�1

n�1 � gn)

donc G est engendré par S. De plus, |g|S  n et

d(w, g(w)) =
n�1X

j=0

d(�(tj), �(tj+1))

�
n�2X

j=0

d(�(tj), �(tj+1))

� D

3
(n� 1)

� D

3
|g|S � D

3
.

Si on note M = max{d(g(w), w), g 2 S}, alors, pour tout g 2 G, on a

d(g(w), w)  |g|S ·M

donc

g 7! g(w)

est une quasi-isométrie de (G, | · |S) sur G(w). Par définition de D, on a X ⇢ G(B(w,D)),

donc on a bien une quasi-isométrie sur X.

On présente quelques énoncés dans l’environnement du lemme 2.9.
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Exercice 2.13. — Montrer que Z et R sont quasi-isométriques.

Exercice 2.14. — On suppose que G opère sur un espace connexe X, et qu’il existe un

ouvert U ⇢ X tel que G(U) = X. Montrer que

S = {g 2 G, g(U) \ U 6= ;}

engendre G.

Exercice 2.15. — Soit G un groupe qui opère proprement discontinûment par isométries

sur un espace métrique géodésique propre (X, d) (l’action n’est pas supposée cocompacte).

Pour x0 2 X et tout R > 0, on pose

D(x0, R) = {x 2 X, il existe g 2 G tel que d(x, gx0)  R} .

Montrer que G est de type fini si et seulement si, pour tout x0 2 X, il existe R > 0 tel

que D(x0, R) est connexe.

Exercice 2.16. — Soit G un groupe qui opère géométriquement sur un espace métrique

géodésique propre (X, d).

(1) Soit ↵ 2 (0, 1).

(a) Montrer que d↵(x, y)
def.
= d(x, y)↵ définit une distance sur X.

(b) Montrer que (X, d↵) est un espace métrique propre et que l’application Id :

(X, d) ! (X, d↵) n’est pas une quasi-isométrie.

(2)(a) Montrer que G opère géométriquement sur (X, d↵).

(b) Peut-on appliquer le lemme de Schwartz-Milnor à l’action de G sur (X, d↵) ?

(3) Montrer que (X, d↵) n’est pas géodésique (on pourra montrer que les courbes non

triviales ont une longueur infinie).

Exercice 2.17. — Soit G un groupe qui opère géométriquement sur un espace métrique

propre quasi-géodésique (X, d). Le groupe G est-il quasi-isométrique à X ?

2.4. Objets de la géométrie des groupes

Un des principaux objectifs de la théorie géométrique des groupes est d’apporter des

réponses aux questions générales suivantes :

Question 2.18 (fondamentale). —

— Quels groupes opèrent par isométries sur quels espaces ?

— Si un groupe opère sur un espace, que peut-on en déduire sur ce groupe ? et sur

l’espace ?

— Si on pense à un groupe comme à un espace métrique, à quoi ressemble-t-il ?
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Le lemme de Švarc-Milnor montre qu’un groupe de type fini n’a qu’une action géométrique

sur un espace géodésique propre à quasi-isométries près. En particulier, tous ses graphes

de Cayley localement finis sont quasi-isométriques. On dira par extension qu’un espace est

quasi-isométrique à un groupe s’il est quasi-isométrique à l’un de ses graphes de Cayley

localement fini.

Exercice 2.19. — Soit G un groupe de type fini.

(1) Soit H un sous-groupe d’indice fini. Montrer que H est quasi-isométrique à G et

que H est aussi de type fini. On pourra faire opérer H sur un graphe de Cayley

localement fini de G.

(2) Montrer que si N est un sous-groupe fini et distingué de G, alors G et G/N sont

quasi-isométriques.

On cherche donc à classer les groupes de type fini à quasi-isométries près (en éludant

les cas ⌧ élémentaires � donnés par l’exercice précédent). Rappelons que deux groupes G1

et G2 sont virtuellement isomorphes s’il existe des sous-groupes d’indice fini Hi < Gi et

des sous-groupes normaux finis Fi / Hi tels que H1/F1 et H2/F2 sont isomorphes. Deux

groupes de type fini virtuellement isomorphes sont toujours quasi-isométriques, mais la

réciproque est fausse en général. Lorsque tous les groupes d’une classe de quasi-isométrie

sont tous virtuellement isomorphes, on parle de rigidité quasi-isométrique, cf. le théorème

2.22. Les théorèmes de l’introduction en sont aussi des illustrations.

La classification à quasi-isométries près comprend aussi la question suivante :

Question 2.20. — Si deux groupes sont quasi-isométriques, dans quelle mesure jouissent-

ils des mêmes propriétés algébriques ?

Cela revient en particulier à établir les propriétés des groupes qui sont invariantes par

quasi-isométries. On dit alors qu’elles sont géométriques. Toute propriété géométrique

sera donc une propriété du groupe. Par exemple, le fait d’être de présentation finie est

géométrique. Voici un autre exemple.

Exercice 2.21. — (1) Soient f, g : X ! Y deux applications telles que sup
x2X dY (f(x), g(x)) 

M où M � 0 est une constante. Montrer que f est une quasi-isométrie si et seule-

ment si g l’est.

(2) Soit X un espace métrique et considérons l’ensemble QI(X) des quasi-isométries de

X. Montrer qu’il est stable par composition.

(3) Pour f, g 2 QI(X), on écrit f ⇠ g si sup
x2X dY (f(x), g(x))  M pour une constante

M � 0. Montrer que cela définit une relation d’équivalence.

(4) Montrer que l’ensemble des classes d’équivalence [f ] de quasi-isométries f : X ! X

forme un groupe pour la composition (induite par celle de ses représentants). Ce

groupe est le groupe de quasi-isométries de X.
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(5) Montrer que deux espaces quasi-isométriques ont des groupes de quasi-isométries

isomorphes.

Les classes de quasi-isométrie et d’isomorphisme virtuel des groupes libres abéliens ou

non cöıncident —elles sont quasi-isométriquement rigides.

Théorème 2.22. — On a les propriétés suivantes.

— Un groupe de type fini quasi-isométrique à un groupe libre contient un sous-groupe

libre d’indice fini (J. Stallings [Sta]).

— Un groupe de type fini quasi-isométrique à un groupe abélien contient un sous-groupe

libre abélien d’indice fini (P. Pansu [Pan]).

2.5. Quasi-isométries

On donne quelques exercices sur les quasi-isométries qui devraient permettre de se

familiariser avec la notion.

Exercice 2.23. — Montrer que la relation ⌧ être quasi-isométrique � définit une relation

d’équivalence sur les espaces métriques.

Exercice 2.24. — Montrer que pour que deux espaces métriques X et Y soient quasi-

isométriques, il faut et il su�t qu’il existe des sous-ensembles X 0 ⇢ X et Y 0 ⇢ Y cobornés

et une quasi-isométrie entre X 0 et Y 0.

Exercice 2.25. — Soient X et Y deux espaces métriques. Une correspondance quasi-

isométrique est donnée par deux constantes � � 1 et c > 0 et une relation binaire R ⇢
X ⇥ Y telles que

(1) les projections canonique sur chaque facteur sont surjectives : pour tout x 2 X, il

existe y 2 Y tel que xRy ; pour tout y 2 Y , il existe x 2 X tel que xRy ;

(2) si xRy et x0Ry0, alors

1

�
dX(x, x

0)� c  dY (y, y
0)  �dX(x, x

0) + c.

Montrer que X et Y sont quasi-isométriques si et seulement s’il existe une correspondance

quasi-isométrique entre X et Y .

Exercice 2.26. — Le but de cet exercice est de montrer que, quelle que soit " > 0, un

espace de longueur X est (1 + ", 2)-quasi-isométrique à un graphe G dont chaque arête

est isométrique au segment [0, 1]. Soit � > 0.

(1) Montrer qu’il existe une famille maximale de boules B� de rayon � deux à deux

disjointes dans X. Montrer que si x 2 X, il existe B = B(c, �) 2 B� telle que

d(x, c) < 2�.
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(2) On définit le graphe � = (S,A), où S = B� et (B,B0) 2 A, B = B(c, �), B0 =

B(c0, �), si d(c, c0)  1. Montrer que l’application B = B(c, �) 2 � 7! c 2 X définit

une (1 + ", 2)-quasi-isométrie, où " = O(�).

Exercice 2.27. — Soit Tn l’arbre régulier infini, où chaque sommet est l’extrémité de n

arêtes, n � 3. On munit Tn de la distance de longueur qui rend chaque arête isométrique

à [0, 1].

(1) On colorie les arêtes de T3 de trois couleurs a, b et c de sorte que chaque sommet est

l’extrémité d’une arête de chaque couleur, et on considère la relation d’équivalence

x ⇠ x0 si {x, x0} est inclus dans la fermeture d’une arête de couleur a.

(a) Montrer que T3/ ⇠ est isomorphe à T4.

(b) En déduire que T3 et T4 sont quasi-isométriques.

(2) Montrer que Tm et Tn sont quasi-isométriques si m,n � 3.

(3) En déduire que Fm et Fn sont quasi-isométriques si m,n � 2.
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