2. ACTIONS GEOMETRIQUES, QUASI-ISOMETRIES

Ce chapitre introduit les objets de base de la géométrie des groupes. Il s’agit d’étudier
les groupes par des méthodes topologiques et géométriques, a travers ses actions sur
différents espaces. En particulier, on montre qu'un groupe de type fini dénombrable porte
une géométrie bien définie a quasi-isométries pres. Un de ces aspects est de considérer un
groupe comme un objet géométrique.

Suivant F. Klein, une géométrie est donnée par un ensemble X et un groupe de trans-
formations G de X i.e., un sous-groupe G des bijections de X. On peut par exemple
étudier un espace vectoriel £ muni du groupe linéaire GL(E), un espace affine euclidien
muni du groupe de ses isométries, etc. On étudie alors les < étres au point de vue des
propriétés qui ne sont pas altérées par les transformations du groupe > [Kle]. Dans le
premier exemple, il s’agit des sous-espaces vectoriels, des applications linéaires, etc. Dans
le second, cela comprend aussi la notion d’orthogonalité, de distances a des sous-espaces
affines, etc.

L’objet principal de la géométrie est donc de développer la théorie des invariants relatifs
a ce groupe. De maniere générale, deux géométries (X1, Gy) et (X, Go) sont équivalentes
s’il existe une bijection b : X; — X5 qui conjugue les groupes G, et Gy :

GQ:{bOgOb_l, g€G1}.

D’une certaine maniere, le programme d’Erlangen de F. Klein défend la these selon
laquelle la géométrie se ramene a 1’étude des groupes qui préservent les structures ajoutées.
La théorie géométrique des groupes adopte le point de vue inverse : on étudie un groupe
en considérant les différentes actions qu’il admet sur des espaces géométriques, voire
topologiques. On tire les propriétés algébriques du groupe en appliquant des méthodes
géométriques. Cette méthode remonte aux travaux de M. Dehn, et a été systématiquement
appliquée par M. Gromov, avec des résultats spectaculaires.

Rappelons qu’une action d’un groupe G sur un ensemble X est donnée par un mor-
phisme de groupes

p:G— Bij(X).

Le point de départ sont les graphes de Cayley associés a des systemes de générateurs
finis. Cela munit le groupe d’'une géométrie. Puis on s’intéresse a ses actions sur des
espaces métriques par isométries avec pour point d’orgue le lemme fondamental de la
théorie géométrique des groupes qui relie un groupe a la géométrie de I'espace sur lequel
il opere. On conclut ce chapitre par des propriétés des quasi-isométries. On fixe tout
d’abord du vocabulaire pour la suite.

2.1. Notions de géométrie métrique

Dans tout ce paragraphe, (X, d) désigne un espace métrique.
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On dit que X est propre si, pour tout zy € X, la fonction € X + d(zo, z) est propre,
autrement dit les boules fermées de rayon fini sont compactes, ou encore, les fermés bornés
sont compacts.

Une courbe (paramétrée) ou un chemin dans X est une application continue vy : I — X
ou I est un intervalle de R. On peut, comme dans les espaces euclidiens et lorsque I est

compact, définir la longueur de v par

((y) =sup Y d(y(t), 7 (tj+1))

ou le supremum est pris sur toutes les subdivisions (¢;)o<;j<, de I telles que [to,t,] = I.
Si I n’est pas compact, alors on définit £(vy) = sup;; £(7]s), ol le supremum est pris sur
les intervalles compacts de I. Si cette longueur ¢(7y) est finie, on dira que la courbe est
rectifiable.

Un chemin v : I — X est géodésique si, pour tous s,t € I, on a d(y(t),v(s)) = |t — s|.
On dit que 7, ou y(I), est une géodésique si I = R, un rayon (géodésique) si I = R, et
un segment (géodésique) si I est un intervalle compact.

Un segment géodésique d’extrémités x et y sera noté [z, y], méme s’il n’est pas unique.

DEFINITION 2.1 (Espace de longueur). — Un espace métrique (X,d) est un espace de

longueur si, pour tous v,y € X,

d(x,y) = inf £(7)
ot linfimum est pris sur tous les chemins v : [0,1] — X d’extrémités x et y i.e., tels que

7(0) =z et y(1) = y.

On dit que X est géodésique si toute paire de points {z,y} est jointe par un segment
géodésique (qui n’est pas forcément unique). Un espace géodésique est donc un espace de

longueur. La réciproque est vraie si X est propre :

EXERCICE 2.2. — Montrer que si X est un espace de longueur propre, alors X est
géodésique.

2.2. Groupes de type fini, graphes de Cayley

Un groupe G est de type fini §’il est finiment engendré. Autrement dit, il existe un
ensemble fini S C G tel que, pour tout g € G, il existe sq,...,s, € S tels que

g = 8182...5.

Dans ce paragraphe, on montre comment associer un espace métrique a un groupe de
type fini muni d’une action de ce groupe. On présente d’abord une famille de groupes qui

jouent un role particulier dans la théorie.
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2.2.1. Groupes libres. Soit A un ensemble, que 'on appelle alphabet et ses éléments lettres.
On définit formellement A~! en écrivant a=! pour a € A. Un mot est un élément de
A* = Upso(AUAH™ ott A° = {0}. En général, on écrit un mot (ay, .. ., a,) sous la forme
a1y ... ay; . ex. ayadaytas si A= {ay,as,...,a,}, n >3

On munit A* de la loi de composition interne définie par concaténation : si mq, my € A*,
alors on construit myms € A*. On vérifie que cette loi est associative d’élément neutre le
mot vide ().

On définit la relation d’équivalence sur les mots engendrée par les relations miaa™tmsy ~

Lamy ~ mims, olt my,me € A* et a € A. Un mot qui ne contient aucun

1 1

mims et mia~

sous-mot de la forme miaa™"my ou mia~ amsy s’appelle un mot réduit.

EXERCICE 2.3. — Soit A un ensemble. Montrer que tout mot de A* admet un unique
représentant réduit.

Le groupe libre F(A) d’alphabet A est A*/ ~ muni de la concaténation.

EXERCICE 2.4. — Le but de cet exercice est de montrer que F(A) et F(B) sont isomorphes
si et seulement si A et B ont méme cardinal.

(1) Soit N(A) le sous-groupe de F(A) engendré par les carrés g* de F(A). Montrer que
N(A) est distingué dans F(A).

(2) Montrer que F(A)/N(A) est isomorphe a (Z/27)* et que ce quotient a une structure
naturelle d’espace vectoriel sur Z./27.

(3) En déduire que F(A) et F(B) sont isomorphes si et seulement si A et B ont méme
cardinal.

Sin > 1, on désigne par IF,, le groupe libre sur n lettres. Si n = 1, alors [y est isomorphe
a 7. Plus généralement, I, est isomorphe au groupe fondamental d’un bouquet de n cercles
i.e, la réunion disjointe de n cercles marqués (S',a;), 1 < j < n, ou on identifie les points

aj.

EXERCICE 2.5. — Soiten G un groupe et S un systeme de générateurs fini. On définit
Uapplication © : F(S) — G qui a un mot sy...s, € S* associe l’élément du groupe
g=51...8; € G.

(1) Montrer que w est un morphisme de groupes.

(2) Montrer que G est isomorphe a F(S)/ker .

2.2.2. Graphes de Cayley. Soit (G,S) un groupe de type fini muni d’un systeme de
générateurs S symétrique (s € S implique s=! € S). On définit |g|s comme le nombre
minimal de lettres de S nécessaires pour écrire g en les générateurs de S. On définit la
métrique des mots sur G associée & S en posant ds(g,g’) = |g7'¢'|s. On vérifie facilement
que dg(gz, gy) = dg(x,y) pour tous g,z,y € G.
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On appelle graphe un espace topologique I' obtenu & partir d'un ensemble A = 'V
de copies de l'intervalle [0, 1] en identifiant des extrémités. Le graphe I" est fini si A est
fini. On appelle aréte chaque élément de A. Une aréte a deux extrémités éventuellement
confondues dans I', les éléments de I'ensemble S = I'(®) de points du graphe ainsi obtenus
sont appelés les sommets de I'.

Si G est de type fini et S est une famille finie et symétrique de générateurs de G, on peut
considérer le graphe de Cayley G associé a S : les sommets sont les éléments du groupe,
et on joint une paire (¢,¢') € G X G par une aréte étiquetée par s € S si g 'g' = s.
On oriente Paréte dans le sens (g, gs), de sorte que si on lit un chemin orienté d’arétes
en partant de 1’élément neutre e que l'on retranscrit de la gauche vers la droite, alors on
obtient une écriture de 'autre extrémité g en les générateurs de S. En particulier, une
boucle dans G issue de e est une écriture de ’élément neutre. Par conséquent, si A est
fini et que 'on considere le graphe de Cayley de F(A) en prenant comme générateurs les
a,a”!, a € A, on obtient un graphe sans boucle, donc un arbre, car les éléments de F(A)
sont en bijection avec les mots réduits de A*.

En munissant G de la métrique de longueur qui rend chaque aréte isométrique au
segment [0, 1], on obtient la métrique des mots associée a S sur les sommets. Elle fait de
G un espace géodésique et propre, et 'action de G sur lui-méme par translations a gauche
induit une action libre sur G.

Exemple : le groupe libre.— Voici le graphe de Cayley du groupe libre a deux
générateurs avec les générateurs standard.

—t

b

Lo
b ba
—— -—cﬁl-)
1 5 a la®
I ab’lI
—— ——
-—q

Exemple.— Si G = Z, on peut prendre le systeme de générateurs {1, —1}. On obtient
ainsi une droite. Mais si on prend {2, 3, (—2), (—3)}, alors le graphe est différent.

e e e e o
ST SO OO0

-2 -1 0 1 2

Cay(Z,{1}) Cay(Z, {2,3})
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Exemple.— Si G = Z? on peut prendre le systeme de générateurs {(+1,0), (0, £1)}.
On obtient ainsi un pavage par carré du plan.

(-2,0)| (-1,0)] (0,0)

(=2, -1)(=1, =1)(0, -1)] (1, -1)| (2, -1)

(-2, -9)(-1, -2 (0, -2) 1_:.—2;|T:2<—‘.':‘

On commence par une proposition qui montre que toutes les actions sur les graphes de
Cayley localement finis sont semblables.

PROPOSITION 2.6. — Soit G un groupe de type fini. Si S et S' sont deux systémes de
générateurs finis, alors I1d : (G,dg) — (G, dg) est bilipschitzienne : il existe une constante
L > 1 telle que, pour tous g,¢ € G,

1
Eds(g,g’) <ds(9,d) < Lds(g,9) .

DEMONSTRATION. On considere Papplication Id : (G,ds) — (G,dg). Si g1,92 € G alors

on a ds(g1,92) = |91 g2 et ds (91, 92) = g1 g2lsr- Si |g7 " gals = m alors |g7 " ga|s < £-m
ou ¢ = max{|s|s,s € S}, impliquant ainsi dg (g1, 92) < lds(g1,g2). Par symétrie, on
obtient ds(g1,92) < {'dg/(g1,92), avec £’ = max{|s'|s,s € S’}. On conclut avec L =
max{/,('}. ]

2.3. Le lemme fondamental de la théorie géométrique des groupes

Soit (X, d) un espace métrique propre. On suppose maintenant que G opére par homéomorphismes
sur X, autrement dit, on a un morphisme p : G — Homéo(X).

DEFINITION 2.7 (Action géométrique). — Un groupe G opere géométriquement sur un
espace métrique propre X si

(1) chaque élément opére par isométrie : pour tous x,y € X et tout g € G,
d(g(x), 9(y)) = d(z,y);

(2) laction est proprement discontinue : pour tous compacts K et L de X,
{9€G, g(K)NL#0}

est fini;

(3) laction est cocompacte : il existe un compact K tel que X = Ugeqg(K).
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EXERCICE 2.8. — Soit M une variété riemannienne compacte. Montrer que 'action de

m (M) sur son revétement universel est géométrique.

Le lemme suivant généralise la proposition 2.6. Il illustre notamment le fait que 'exis-
tence d'une <« bonne > action permet d’obtenir une propriété algébrique du groupe — ici
le fait d’étre de type fini.

LEMME 2.9 (Svarc—l\/[ilnor). — Soient X un espace géodésique et propre, et G un groupe
qui opere géométriquement sur X. Alors GG est de type fini. De plus, si S est un systeme
de générateurs fini et € X, alors 'application f : g € G +— g(z) vérifie les propriétés
suivantes. Il existe deux constantes A > 1, ¢ > 0 telles que
1
1ds(9,9") — ¢ < dx(g(x), ¢'(2)) < Ms(9,9) +c.

et X C UgeaBx(g(x),c).

Ce lemme montre qu’un groupe qui opere géométriquement sur un espace géodésique
X <« ressemble >, a grande échelle, a X. Cette observation est une clef de la théorie
géométrique des groupes et motive la définition suivante introduite sous cette forme par
G. Margulis [Mar].

DEFINITION 2.10 (Quasi-isométrie). — Soient X,Y des espaces métriques, et X > 1,
¢ > 0 deuz constantes. Une application f : X — Y est un plongement (A, c)-quasi-
isométrique si, pour tous x,x’ € X, on a

1
(1) Tdx(w,2') —e < dy(f(2), f(2) < Adx(z,2') +c.
On dit que [ est une (A, c)-quasi-isométrie s’l existe g : Y — X qui vérifie aussi (1) et
telle que, pour tout v € X, dx(g(f(z)),x) < c et, pour tout y € Y, dy(f(9(y)),y) < c.

EXERCICE 2.11. — Montrer que f : X — Y est une quasi-isométrie si et seulement si f
est un plongement quasi-isométrique et si f(X) est coborné, c.a.d. s’il existe une constante
¢ > 0 tel que, pour tout y € Y, dy (y, f(X)) <c.

COROLLAIRE 2.12. — Soit M une variété riemannienne connexe et compacte. Son groupe
fondamental m (M) est quasi-isométrique a son revétement universel M.

DEMONSTRATION. L’action de (M) sur M est géométrique donc le lemme de Svarc-
Milnor s’applique. [ |

DEMONSTRATION DU LEMME 2.9. Soit K C X un compact tel que G(K) = X, et prenons
w e X et D> 0 pour que K C B(w, D/3). On note

S={9€G, g(Blw,D))N B(w,D) # 0}.
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Puisque X est propre et l'action est proprement discontinue, S est fini (et non vide,
puisque e € S). Nous allons montrer que S engendre G.

Soit g € G, et considérons un segment v : [0,1] — X avec v([0, 1]) = [w, g(w)]. On se
donne une subdivision (t;)o<;<, de [0, 1] telle que ty = 0, ¢, = L et d(7(t;),v(tj+1)) = D/3,
pour j < n — 1. Pour chaque 0 < j < n, il existe g; € G tel que d(v(t;), g;(w)) < D/3;
on pose go = Id et g, = g.

[P -
3 / | Giugy
W= XD \‘-»\o \\\_ J ‘//ﬁ . q
—. . S //- r o " s
& s \/'\ - Y1t
\
d) b
Du coup,

d(g;(w), gj1(w)) < d(g;(w),v(t;)) + d(y(t;), y(tj41)) + d(¥(Ej41), gja(w)) < D
Par conséquent d((g; Yo gi)(w),w) < D et (9; "0 g;41) € S. En particulier,
g9=90°(95" ©g1) (921 © )

donc G est engendré par S. De plus, |g|s < n et

dwgw) = Y d(E) b))
> 3 da ()2 (e)
> Z-1)
D D
2 g’g‘s—g-

Si on note M = max{d(g(w),w), g € S}, alors, pour tout g € G, on a

d(g(w),w) < |gls - M

donc

g g(w)
est une quasi-isométrie de (G, |- |s) sur G(w). Par définition de D, on a X C G(B(w, D)),
donc on a bien une quasi-isométrie sur X. [ |

On présente quelques énoncés dans I'environnement du lemme 2.9.

it

XN
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EXERCICE 2.13. — Montrer que Z et R sont quasi-isométriques.

EXERCICE 2.14. — On suppose que G opére sur un espace connexe X, et qu’il existe un
ouvert U C X tel que G(U) = X. Montrer que

S={geG, gU)NU # 0}
engendre G.

EXERCICE 2.15. — Soit G un groupe qui opére proprement discontiniment par isométries
sur un espace métrique géodésique propre (X, d) (Iaction n’est pas supposée cocompacte).

Pour xy € X et tout R > 0, on pose
D(zo, R) = {x € X, il existe g € G tel que d(z, gro) < R}.
Montrer que G est de type fini si et seulement si, pour tout xo € X, il existe R > 0 tel

que D(zo, R) est connexe.

EXERCICE 2.16. — Soit G un groupe qui opéere géométriquement sur un espace métrique
géodésique propre (X, d).
(1) Soit « € (0,1).
(a) Montrer que du(x,y) o d(z,y)* définit une distance sur X.
(b) Montrer que (X,d,) est un espace métrique propre et que lapplication Id :
(X,d) — (X,d,) n'est pas une quasi-isométrie.
(2) (a) Montrer que G opeére géométriquement sur (X, dy).
eut-on appliquer le lemme de Schwartz-Milnor a l'action de G sur (X, d,)
b) Peut li le 1 de Schwartz-Mil 1 laction de G X,d,) ?

(3) Montrer que (X,d,) n'est pas géodésique (on pourra montrer que les courbes non
triviales ont une longueur infinie).

EXERCICE 2.17. — Soit G un groupe qui opére géométriquement sur un espace métrique

propre quasi-géodésique (X, d). Le groupe G est-il quasi-isométrique a X ¢

2.4. Objets de la géométrie des groupes

Un des principaux objectifs de la théorie géométrique des groupes est d’apporter des
réponses aux questions générales suivantes :

QUESTION 2.18 (fondamentale). —
— Quels groupes opeérent par isométries sur quels espaces ?
— Si un groupe opére sur un espace, que peut-on en déduire sur ce groupe ? et sur
l’espace ?

— Si on pense a un groupe comme A un espace métrique, a quoi ressemble-t-il ¢
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Le lemme de Svarc-Milnor montre qu’un groupe de type fini n’a qu’une action géométrique
sur un espace géodésique propre a quasi-isométries pres. En particulier, tous ses graphes
de Cayley localement finis sont quasi-isométriques. On dira par extension qu'un espace est
quasi-isométrique a un groupe s’il est quasi-isométrique a 'un de ses graphes de Cayley
localement fini.

EXERCICE 2.19. — Soit G un groupe de type fini.

(1) Soit H un sous-groupe d’indice fini. Montrer que H est quasi-isométrique a G et
que H est aussi de type fini. On pourra faire opérer H sur un graphe de Cayley
localement fini de G.

(2) Montrer que si N est un sous-groupe fini et distingué de G, alors G et G/N sont
quasi-iSométriques.

On cherche donc a classer les groupes de type fini a quasi-isométries pres (en éludant
les cas < élémentaires > donnés par 'exercice précédent). Rappelons que deux groupes Gy
et Gy sont virtuellement isomorphes s'il existe des sous-groupes d’indice fini H; < G; et
des sous-groupes normaux finis F; < H; tels que Hy/F) et Hy/F, sont isomorphes. Deux
groupes de type fini virtuellement isomorphes sont toujours quasi-isométriques, mais la
réciproque est fausse en général. Lorsque tous les groupes d’une classe de quasi-isométrie
sont tous virtuellement isomorphes, on parle de rigidité quasi-isométrique, cf. le théoreme
2.22. Les théoremes de l'introduction en sont aussi des illustrations.

La classification a quasi-isométries pres comprend aussi la question suivante :

QUESTION 2.20. — Si deux groupes sont quasi-isométriques, dans quelle mesure jouissent-
ils des mémes propriétés algébriques ¢

Cela revient en particulier a établir les propriétés des groupes qui sont invariantes par
quasi-isométries. On dit alors qu’elles sont géométriques. Toute propriété géométrique
sera donc une propriété du groupe. Par exemple, le fait d’étre de présentation finie est
géométrique. Voici un autre exemple.

EXERCICE 2.21. — (1) Soient f,g : X =Y deux applications telles que sup . x dy (f(z), g(x)) <
M ou M > 0 est une constante. Montrer que f est une quasi-isométrie si et seule-
ment st g l’est.

(2) Soit X un espace métrique et considérons l’ensemble QI(X) des quasi-isométries de
X. Montrer qu’il est stable par composition.

(3) Pour f,g € QI(X), on écrit f ~ g sisup,cx dy(f(x),g(z)) < M pour une constante
M > 0. Montrer que cela définit une relation d’équivalence.

(4) Montrer que [’ensemble des classes d’équivalence [f] de quasi-isométries f: X — X
forme un groupe pour la composition (induite par celle de ses représentants). Ce
groupe est le groupe de quasi-isométries de X.
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(5) Montrer que deux espaces quasi-isométriques ont des groupes de quasi-isométries

1somorphes.

Les classes de quasi-isométrie et d’isomorphisme virtuel des groupes libres abéliens ou
non coincident —elles sont quasi-isométriquement rigides.

THEOREME 2.22. — On a les propriétés suivantes.
— Un groupe de type fini quasi-isométrique a un groupe libre contient un sous-groupe
libre d’indice fini (J. Stallings [Stal).
— Un groupe de type fini quasi-isométrique a un groupe abélien contient un sous-groupe
libre abélien d’indice fini (P. Pansu [Pan]).

2.5. Quasi-isométries

On donne quelques exercices sur les quasi-isométries qui devraient permettre de se
familiariser avec la notion.

EXERCICE 2.23. — Montrer que la relation < étre quasi-isométrique > définit une relation
d’équivalence sur les espaces métriques.

EXERCICE 2.24. — Montrer que pour que deux espaces métriqgues X et Y soient quasi-
isométriques, il faut et il suffit qu’il existe des sous-ensembles X' C X et Y' C Y cobornés
et une quasi-isométrie entre X' et Y.

EXERCICE 2.25. — Soient X et Y deux espaces métriques. Une correspondance quasi-
isométrique est donnée par deux constantes A > 1 et ¢ > 0 et une relation binaire R C
X XY telles que

(1) les projections canonique sur chaque facteur sont surjectives : pour tout x € X, il
existe y € Y tel que xRy ; pour tout y € Y, il existe x € X tel que xRy ;
(2) st xRy et 'Ry, alors
1

XdX(x,x’) —c <dy(y,y) < Mx(z,2") +c.

Montrer que X etY sont quasi-isométriques si et seulement s’il existe une correspondance
quasi-isométrique entre X etY .

EXERCICE 2.26. — Le but de cet exercice est de montrer que, quelle que soit € > 0, un
espace de longueur X est (1 + €,2)-quasi-isométrique a un graphe G dont chaque aréte
est isométrique au segment [0, 1]. Soit § > 0.

(1) Montrer qu’il existe une famille mazximale de boules Bs de rayon 0 deuxr d deux
disjointes dans X. Montrer que si x € X, il existe B = B(c,0) € By telle que
d(z,c) < 26.
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(2) On définit le graphe T' = (S, A), ou S = Bs et (B,B') € A, B = B(c,0), B’ =
B(c,9), sid(e,d) < 1. Montrer que Uapplication B = B(c,0) € I' — ¢ € X définit
une (1 + €, 2)-quasi-isométrie, ou e = O(J).
EXERCICE 2.27. — Soit T,, l'arbre régulier infini, ot chaque sommet est l'extrémité de n
arétes, n > 3. On munit T, de la distance de longueur qui rend chaque aréte isométrique
a [0,1].
(1) On colorie les arétes de Ty de trois couleurs a, b et ¢ de sorte que chaque sommet est
Uextrémité d’une aréte de chaque couleur, et on considere la relation d’équivalence
x ~ ' si{x,2'} est inclus dans la fermeture d’une aréte de couleur a.
(a) Montrer que T3/ ~ est isomorphe a T}.
(b) En déduire que T3 et Ty sont quasi-isométriques.
(2) Montrer que T,, et T, sont quasi-isométriques st m,n > 3.

(8) En déduire que F,, et T, sont quasi-isométriques si m,n > 2.
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