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Abstract. We provide a streamlined proof that the class of convex-cocompact

Kleinian groups are quasi-isometrically rigid, relying on the quasi-isometric

invariance of strong accessibility for word hyperbolic groups.

1. Introduction

A Kleinian group G is a discrete subgroup of PSL2(C). It acts properly discon-
tinuously on the hyperbolic 3-space H3 via orientation-preserving isometries and

it acts on the Riemann sphere Ĉ via Möbius transformations. The latter action is
usually not properly discontinuous: there is a canonical and invariant partition

Ĉ = ΩG t ΛG

where ΩG denotes the ordinary set, which is the largest open set of Ĉ on which
G acts properly discontinuously, and where ΛG denotes the limit set, which is the

minimal G-invariant compact subset of Ĉ.
As Poincaré observed, we may identify the Riemann sphere with the bound-

ary at infinity of the three-dimensional hyperbolic space [Poi]. Explicitly, let us
consider the open unit ball in R3 as a model of H3 and the unit sphere S2 for the
Riemann sphere. One obtains in this way an action of a Kleinian group G on the
closed unit ball. With this identification in mind, the group G preserves the convex
hull Hull(ΛG) of its limit set in H3. The group G is convex-cocompact if its action
is cocompact on Hull(ΛG).

This class of groups plays an essential role in the classifcation of compact 3-
manifolds. When G is torsion-free, we may associate a 3-manifold MG = (H3 ∪
ΩG)/G, canonically endowed with a complete hyperbolic structure in its interior,
which is called the Kleinian manifold associated to G. If G is a torsion-free Kleinian
group, then G is convex-cocompact if and only if MG is compact. Note that MG

is also orientable, irreducible and its fundamental group is infinite (as soon as MG
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is not a closed ball) and contains no subgroup isomorphic to Z ⊕ Z. Conversely,
Perel’man proved that an orientable, irreducible compact 3-manifold with infinite
fundamental group which contains no subgroup isomorphic to Z⊕ Z is isomorphic
to some MG, where G is a convex-cocompact Kleinian group (when M is Haken,
this was previously established by Thurston).

Characterizing this class of convex-cocompact Kleinian groups is a natural and
interesting problem. From the point of view of geometric group theory, one tries to
understand the properties of a group by studying the different actions it admits on
metric spaces. To start with, a finitely generated group acts by left-translation on
the Cayley graph X associated to any of its finite generating sets. If such a graph
is equipped with the length metric which makes each edge isometric to the segment
[0, 1], then the action of G becomes geometric: the group G acts by isometries (the
action is distance-preserving), properly discontinuously (for any compact subsets
K and L of X, at most finitely many elements g of G will satisfy g(K) ∩ L 6= ∅)
and cocompactly (the orbit space X/G is compact).

The classification of finitely generated groups up to quasi-isometry is a central
issue: a quasi-isometry between metric spaces X and Y is a map ϕ : X → Y such
that there are constants λ > 1 and c > 0 such that:

• (quasi-isometric embedding) for all x, x′ ∈ X, the two inequalities

1

λ
dX(x, x′)− c ≤ dY (ϕ(x), ϕ(x′)) ≤ λdX(x, y) + c

hold and
• the c-neighborhood of the image f(X) covers Y .

This defines in fact an equivalence relation on metric spaces. Note that any two
locally finite Cayley graphs of the same group are quasi-isometric; this fact enables
us to consider the quasi-isometry class of a finitely generated group (through the
class of its locally finite Cayley graphs). More generally, Švarc-Milnor’s lemma
asserts that there is only one geometric action of a group on a proper geodesic
metric space up to quasi-isometry [GdlH, Prop. 3.19].

On the other hand, quasi-isometric groups may be very different one from
another. For instance, it is not clear that a group quasi-isometric to a linear group
is itself linear.

Our main result says that a group G is virtually a convex-cocompact Kleinian
group if it looks like one:

Theorem 1.1 (quasi-isometric rigidity). The class of convex-cocompact Kleinian
groups is quasi-isometrically rigid. More precisely, a finitely generated group quasi-
isometric to a convex-cocompact Kleinian group contains a finite index subgroup
isomorphic to a (possibly different) convex-cocompact Kleinian group.

This theorem was derived in [Häı] from an indirect approach, using rather
heavy material. In the present paper, we would like to offer a more direct proof,
avoiding many technical parts of the aformentioned paper, relying instead on three-
dimensional topological methods when possible. We assume nonetheless some fa-
miliarity with Bass-Serre theory.

There are several cases which were already known prior to this work.
Let us assume that G is a finitely generated group quasi-isometric to a convex-

cocompact Kleinian group K. The following cases are already known.
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(1) If ΛK = ∅ then K is finite, so G is finite as well, and we may consider the
trivial group.

(2) If ΛK consists of two points, then K contains an infinite cyclic subgroup of
finite index, so G as well [SW], hence G contains a finite index subgroup
isomorphic to the cyclic and Kleinian group 〈z 7→ 2z〉.

(3) If ΛK is a Cantor set, then K is virtually free, so G as well [Sta, SW]
and there is a finite index free subgroup H which is isomorphic to the
fundamental group of a handlebody. This implies that H is isomorphic to
a convex-cocompact Kleinian group —a so-called Schottky group.

(4) If ΛK is homeomorphic to the unit circle, then G contains a finite index
subgroup isomorphic to a cocompact Fuchsian group according to [CJ,
Gab].

(5) If ΛK = Ĉ then G contains a finite index subgroup isomorphic to a co-
compact Kleinian group [CC]; see also Corollary 3.6.

(6) If ΛK is homeomorphic to the Sierpiński carpet, then G is commensurable
to K [Fri]; this also follows straightfowardly from [BKM], see Corollary
3.10.

Our method of proof provides us with the following result.

Theorem 1.2. Let G be a word hyperbolic group and let us assume that its
boundary is homeomorphic to the limit set of a convex-cocompact Kleinian group
which contains no subset homeomorphic to the Sierpiński carpet. Then G contains
a finite index subgroup isomorphic to a convex-cocompact Kleinian group.

In our setting, an elementary group is a group which is either finite or virtually
cyclic. We will assume that G is non-elementary with limit set different from a
circle and a sphere, unless specifically stated.

Outline of the paper.— In the next section, we quickly review properties of 3-
manifolds and their relationships with convex-cocompact Kleinian groups. Section
3 is devoted to word hyperbolic groups. After recalling their definition and main
properties, we explain how the previously known cases of quasi-isometric rigidity
may be established, using analytic properties of their boundaries. We conclude
the section with a word on quasiconvex subgroups. Sections 4 and 5 are devoted
to canonical splittings of word hyperbolic groups inspired by 3-manifolds. It is
proved that strong accessibility is invariant under quasi-isometries (Theorem 5.2).
The proof of the main theorem is given in Section 6. We introduce the notion
of a regular JSJ-decomposition for groups which enables one to build manifolds
and we adapt the notions of acylindrical pared manifolds to groups. Starting from
a group G quasi-isometric to a convex-cocompact Kleinian group K, the proof
consists in building a 3-manifold with fundamental group isomorphic to (a finite-
index subgroup of) G and in applying Thurston’s uniformization theorem. We
proceed by induction on the hierarchy of G over elementary groups provided by
K. The initial cases are essentially already known. For the inductive step, we split
the group over elementary groups and apply the induction hypothesis to obtain a
finite collection of pared manifolds that are to be glued together. The gluing is made
possible thanks to the separability of quasiconvex subgroups provided by the theory
of Wise, Agol et al. on word hyperbolic groups acting on CAT(0) cube complexes
(Theorem 6.2); it enables us to replace G by a subgroup of finite index G′ such that
the splitting is sufficiently regular so that the pared submanifolds can be pieced
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together to yield a Haken compact manifold with fundamental group isomorphic to
G′. We conclude the paper with an example given by Kapovich and Kleiner which
shows that taking a finite index subgroup can be necessary. We also provide some
examples showing that the residual limit set of Kleinian groups does not depend
only on its isomorphism class: this justifies the efforts done in the inductive step.

Acknowledgements.— I would like to thank the organizers of the Ahlfors-Bers
Colloquium 2014 for their invitation. It is also my pleasure to thank Cyril Lecuire
and Luisa Paoluzzi for the many conversations we have had on this work and for
their comments on preliminary versions of this text. I also thank Mat́ıas Carrasco
for discussions on JSJ-splittings for word hyperbolic groups. Last but not least, I
am grateful to the referee for her or his comments.

2. Hyperbolizable 3-manifolds

We quickly review definitions and properties of 3-manifolds and of convex-
cocompact Kleinian groups. Basic references include [Thu2, Mor, Mad]. The
following exposition is inspired by [And].

Recall that a Kleinian group K is convex-cocompact if MK = (H3 ∪ ΩK)/K
is compact. Ahlfors showed that if the limit set is not the whole Riemann sphere
then it has measure 0. Furthermore, each connected component of its limit set is
locally connected [AnM].

An orientable 3-manifold M is hyperbolizable if there exists a convex-cocompact
Kleinian group such that M is homeomorphic to MK (this whole presentation rules
out tori in ∂M since they are not relevant to the present work). We say that M
is uniformized by K. Note that K is isomorphic to the fundamental group of M ,
and that it is necessarily word hyperbolic if it contains no subgroup isomorphic to
Z⊕Z, see the next section. Moreover, the boundary ∂M is a union of finitely many
hyperbolic compact surfaces.

Let M be a compact hyperbolizable 3-manifold with boundary. A surface S is
properly embedded in M if S is compact and orientable and if either S ∩ ∂M = ∂S
or S is contained in ∂M . A compression disk D is an embedded disk such that
∂D ⊂ ∂M and ∂D is homotopically non trivial in ∂M . A properly embedded
surface S is incompressible if S is not homeomorphic to the 2-sphere and either
S is a compression disk or if the inclusion i : S → M gives rise to an injective
morphism i∗ : π1(S, x) → π1(M,x). The double of a manifold M with boundary
is the union of M and of a copy of itself glued along its boundary. A surface S
in M is boundary incompressible if its double is incompressible in the double of
M . A Haken manifold is a manifold which contains an incompressible surface. In
our situation, as ∂M 6= ∅, M is always Haken as soon as it fundamental group is
infinite.

We say that M has incompressible boundary if each component of ∂M is in-
compressible. This is equivalent to the connectedness of the limit set of the group
uniformizing M .

A surface S in M is non-peripheral if it is properly embedded and if the inclusion
i : S →M is not homotopic to a map f : S →M such that f(S) ⊂ ∂M . A surface
S is essential if it is properly embedded, incompressible, boundary incompressible
and non-peripheral. An acylindrical compact manifold has incompressible boundary
and no essential annuli: the limit set of any uniformizing group is homeomorphic
to the Sierpiński carpet.
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A compact pared manifold (M,P ) is given by a 3-manifold M as above together
with a finite collection of pairwise disjoint incompressible annuli P ⊂ ∂M such that
any cylinder in C ⊂ M with boundaries in P can be homotoped relatively to its
boundary into P . We say the paring is acylindrical if ∂M \P is incompressible and
every incompressible cylinder disjoint from P and with boundary curves in ∂M can
be homotoped into ∂M \ P relatively to ∂M .

If M has compressible boundary, it can be cut along compression disks into
finitely many pieces each of which has incompressible boundary. Given a com-
pact hyperbolizable manifold M with incompressible boundary, we may cut it into
finitely many pieces along essential annuli so that the remaining pieces are acylindri-
cal pared manifolds. Forgetting the paring, we may then iterate the above procedure
by looking for compression disks and essential annuli.

It is a consequence of Haken’s finiteness theorem that this procedure has to
stop in finite time, yielding a finite number of compact manifolds each of which is
either a ball or an acylindrical manifold. The collection of all the manifolds that
are obtained from M defines a hierarchy of the manifold and of its fundamental
group.

We will use the following form of Thurston’s uniformization theorem for Haken
manifolds:

Theorem 2.1. Let M be a compact irreducible orientable Haken 3-manifold
with word hyperbolic fundamental group. Then M is hyperbolizable.

3. Hyperbolicity

Background on word hyperbolic groups include [Gro, GdlH, KB].
Let X be a metric space. It is geodesic if any pair of points {x, y} can be

joined by a (geodesic) segment i.e, a map γ : [0, d(x, y)] → X such that γ(0) = x,
γ(d(x, y)) = y and d(γ(s), γ(t)) = |t− s| for all s, t ∈ [0, d(x, y)]. The metric space
X is proper if closed balls of finite radius are compact.

A triangle ∆ in a metric space X is given by three points {x, y, z} and three
segments joining them two by two. Given a constant δ ≥ 0, the triangle ∆ is δ-thin
if any side of the triangle is contained in the δ-neighborhood of the two others.

Definition 3.1 (Hyperbolic spaces and groups). A geodesic metric space is
hyperbolic if there exists δ ≥ 0 such that every triangle is δ-thin. A group G is word
hyperbolic if it acts geometrically on a proper, geodesic hyperbolic metric space.

Basic examples of hyperbolic spaces are the simply connected Riemannian man-
ifolds Hn of sectional curvature (−1) and R-trees. In particular since the action of
a convex-compact Kleinian group G is cocompact on Hull ΛG, the group G is word
hyperbolic.

Shadowing lemma.— A quasigeodesic is the image of an interval by a quasi-
isometric embedding. The shadowing lemma asserts that, given δ, λ and c, there
is a constant H = H(δ, λ, c) such that, for any (λ, c)-quasigeodesic q in a proper
geodesic δ-hyperbolic metric space X, there is a geodesic γ at Hausdorff distance
at most H.

It follows from the shadowing lemma that, among geodesic metric spaces, hy-
perbolicity is invariant under quasi-isometry : if X, Y are two quasi-isometric
geodesic metric spaces, then X is hyperbolic if and only if Y is hyperbolic.
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Compactification.— A proper geodesic hyperbolic space X admits a canonical
compactification Xt∂X at infinity. This compactification can be defined by looking
at the set of rays i.e., isometric embeddings r : R+ → X, up to bounded Hausdorff
distance. The topology is induced by the uniform convergence on compact subsets.
The boundary can be endowed with a family of visual distances dv compatible with
its topology i.e., which satisfy

dv(a, b) � e−εd(w,(a,b))

where w ∈ X is any choice of a base point, ε > 0 is a visual parameter chosen small
enough, and (a, b) is any geodesic asymptotic to rays defining a and b.

If Φ : X → Y is a quasi-isometry between two proper geodesic hyperbolic
spaces, then the shadowing lemma implies that Φ induces a homeomorphism φ :
∂X → ∂Y . This means that a word hyperbolic group G admits a topological
boundary ∂G defined by considering the boundary of any proper geodesic metric
space on which G acts geometrically.

In the case of a convex-compact Kleinian group K, a model for the boundary
∂K is given by its limit set ΛK .

3.1. Analytic aspects. A general principle asserts that a word hyperbolic
group is determined by its boundary. More precisely, Paulin proved that the
quasi-isometry class of a word hyperbolic group is determined by its boundary
equipped with its quasiconformal structure [Pau]. Let us recall some definitions.
A homeomorphism h : X → Y between metric spaces is called quasi-Möbius [Väi]
if there exists a homeomorphism θ : R+ → R+ such that, for any distinct points
x1, x2, x3, x4 ∈ X,

[h(x1) : h(x2) : h(x3) : h(x4)] ≤ θ([x1 : x2 : x3 : x4])

where

[x1 : x2 : x3 : x4] =
|x1 − x2| · |x3 − x4|
|x1 − x3| · |x2 − x4|

.

Quasi-Möbius maps are stable under composition. The boundary ∂G of a word
hyperbolic group G is endowed with a conformal gauge i.e., a family of metrics
which are pairwise quasi-Möbius equivalent. These metrics are exactly those metrics
compatible with the topology of ∂G for which the action of G is uniformly quasi-
Möbius, meaning that the distortion control θ is independent of g ∈ G. Visual
distances are examples of metrics of the gauge.

Quasi-isometries provide natural examples of quasi-Möbius maps as well:

Theorem 3.2. A (λ, c)-quasi-isometry between proper, geodesic, hyperbolic
metric spaces extends as a θ-quasi-Möbius map between their boundaries, where
θ only depends on λ, c, the hyperbolicity constants and the visual parameters.

This result takes its roots in the work of Efremovich and Tihomirova [ET]; see
also [Mag] where quasi-isometries are explicitly defined and where Theorem 3.2 is
proved for real hyperbolic spaces. The key fact of its proof is that the crossratio
[x1 : x2 : x3 : x4] is measured by the distance between geodesics (x1, x2) and
(x3, x4), a quantity quasi-preserved by quasi-isometries, cf. [Pau, Prop. 4.5] for a
proof in the present setting.

Paulin’s result reads
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Theorem 3.3 (Paulin [Pau]). Two non-elementary word hyperbolic groups are
quasi-isometric if and only if there is quasi-Möbius homeomorphism between their
boundaries.

3.2. Convergence actions. If G is a word hyperbolic group acting geometri-
cally on a proper hyperbolic metric space X, then its action extends as a uniformly
quasi-Möbius action on ∂X. The action of G is a convergence action i.e., its diag-
onal action on the set of distinct triples is properly discontinuous, and is moreover
uniform i.e., its action is also cocompact on the set of distinct triples. As for
Kleinian groups, the limit set ΛG is by definition the unique minimal closed in-
variant subset of X. It is empty if G is finite. These properties characterize word
hyperbolic groups and their boundaries:

Theorem 3.4 (Bowditch [Bow2]). Let G be a convergence group acting on a
perfect metrizable space X. The action of G is uniform on ΛG if and only if G is
word hyperbolic and there exists an equivariant homeomorphism between ΛG and
the boundary at infinity ∂G of G.

In our setting, we start with a finitely generated group G quasi-isometric to
a convex-cocompact Kleinian group K. Since K is convex-cocompact, K is word
hyperbolic, hence G as well. Thus, Theorem 3.4 implies that ∂G is homeomorphic
to ΛK . Moreover, we obtain in this way a quasi-Möbius action of the group G on

ΛK ⊂ Ĉ. Note that the action of G need not be related to the action of K. Let
F < G be the kernel of the action of G on ∂G and G′ = G/F . Since the action of
G is properly discontinuous, F is finite and G′ is quasi-isometric to G, hence ∂G′

is canonically identified with ∂G.

3.3. Quasi-Möbius groups versus Möbius groups. We recall some re-
sults which justify the quasi-isometric rigidity of some of the cases listed in the
introduction. Let us begin with a general result which served as a motivation for
the whole work.

Theorem 3.5 (Sullivan, [Sul]). A countable group of uniformly quasi-Möbius

transformations on Ĉ is conjugate to a group of Möbius transformations.

Corollary 3.6 (Cannon and Cooper, [CC]). If G is quasi-isometric to H3,
then G contains a finite index subgroup isomorphic to a cocompact Kleinian group.

Proof. According to the previous discussion, G acts on Ĉ as a uniform quasi-
Möbius group. Hence Theorem 3.5 implies that the action of G is conjugate to a
group of Möbius transformations. This action extends as an action by isometries
on H3. Since the action is a uniform convergence action, we may check as follows

that G is a cocompact Kleinian group: to any triple on Ĉ, we associate the center
in H3 of the ideal triangle with those points as vertices. We may check that since
the action of G is properly discontinuous and cocompact on the set of triples, it is
also properly discontinuous and cocompact on H3.

If the action of G on its boundary is faithful, then the corollary is proved.
Otherwise, we have just proved that it admits a quotient G′ = G/F by a finite
subgroup F isomorphic to a cocompact Kleinian group. To prove that G itself is
virtually isomorphic to a convex-cocompact Kleinian group, we need to invoke the
theory of word hyperbolic groups acting on CAT(0) cube complexes that we state
as Lemma 3.7 below. Therefore, we may find G′′ < G of finite index such that
G′′ ∩ F = {e} implying that its action is faithful. �
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Lemma 3.7. Let G be a finitely generated group which contains a normal finite
subgroup F such that G/F is isomorphic to a convex-cocompact Kleinian group.
Then G is residually finite.

A proof goes as follows: according to [BW], the group G/F acts geometrically
on a CAT(0) cube complex, so G as well. Hence G contains a finite index subgroup
which acts specially in the sense of Haglund and Wise [HW] according to Agol
[Ago]. Therefore, G is residually finite [HW].

We now recall the rigidity of groups acting on the circle.

Theorem 3.8 (Hinkkanen, Markovic, [Hin1, Hin2, Mak]). Any uniformly
quasi-Möbius group of homeomorphisms on the unit circle is quasisymmetrically
conjugate to a group of Möbius transformations.

Let us now pass to groups acting on Sierpiński carpets.

Theorem 3.9 (Bonk, Merenkov, Kleiner, [BKM]). Any quasi-Möbius selfmap
of a round Sierpiński carpet of measure zero is the restriction of a Möbius trans-
formation.

Corollary 3.10 (Frigerio, [Fri]). If G is quasi-isometric to the fundamental
group K of a compact hyperbolic 3-manifold with totally geodesic boundary, then G
is commensurable to K.

Proof. Since K is the fundamental group of a compact hyperbolic 3-manifold
with totally geodesic boundary, its boundary is a measure zero round Sierpiński
carpet. Let GM denote the set of quasi-Möbius selfhomeomorphisms of ΛK . Note
that GM contains K ∪ G′, where G′ consists of the largest quotient which has a
faithful action on its boundary as above.

According to Theorem 3.9, the action of GM extends to an action of Möbius

transformations on Ĉ. It is clearly discrete since any sequence which tends uniformly
to the identity will have to eventually stabilize at least three circles, implying that
such a sequence is eventually the identity. Therefore, GM is a convergence group,
and since it contains K, its action is uniform on ΛK , hence it is word hyperbolic.
Since the boundaries of K and GM coincide, K has finite index in GM [KS]. The
same holds for G′.

We conclude as above: if G = G′, then the corollary is proved. Otherwise,
we apply Lemma 3.7 to conclude that G is residually finite. Therefore, we may
find G′′ < G of finite index such that G′′ ∩ F = {e} implying that its action is
faithful. �

Thus, we assume throughout this paper that G is none of the above classes.

3.4. Quasiconvex subgroups. Basic references include [KS]. Let X be a
proper, geodesic, hyperbolic metric space. A K-quasiconvex subset Y ⊂ X has
the property that any geodesic segment joining two points of Y remains in the
K-neighborhood of Y . Note that quasiconvexity is a property invariant under
quasi-isometries. A subgroup H of a hyperbolic group G is quasiconvex if H is
quasiconvex in any locally finite Cayley graph of G.

If a group G acts properly discontinuously by isometries on a proper geodesic
hyperbolic metric space, its limit set ΛG is defined as the set of accumulation points
at infinity of any orbit G(x), x ∈ X. This set is G-invariant.



QUASI-ISOMETRIC RIGIDITY OF CONVEX-COCOMPACT KLEINIAN GROUPS 9

Proposition 3.11. Let Φ : G1 → G2 be a quasi-isometry, φ : ∂G1 → ∂G2 its
boundary map, and let Hj ⊂ Gj be quasiconvex subgroups. If φ(ΛH1

) = ΛH2
then

Φ(H1) is at bounded distance from H2 so H1 and H2 are quasi-isometric.

Proof. If H1 is finite, then ΛH1
is empty, so ΛH2

is also empty and H2 is
finite as well. Otherwise, it follows from [KS, Prop. 3.4] that Hj is at bounded
distance from the convex hull C(ΛHj ), j = 1, 2, consisting of the union of geodesics
with endpoints in the respective limit sets. By the shadowing lemma, Φ(C(ΛH1

))
is quasiconvex, at bounded distance from C(ΛH2

), implying the proposition. �

Another proof could have been obtained from Theorem 3.3.

4. Canonical splittings

We describe well-known splittings of word hyperbolic groups which correspond
to splitting a manifold along compression disks and essential annuli. In each case,
the Bass-Serre theory will provide us with a simplicial action of G on a simplicial
tree T with no edge inversions such that T/G is finite and all vertex (stabilizers)
groups and edge (stabilizers) groups are quasiconvex. Note that it is enough to
check that the edge groups are quasiconvex to ensure the vertex groups are as
well [Bow1, Prop. 1.2]. We refer to [Ser, SW] for a general introduction to the
Bass-Serre theory.

In both cases, the splitting will be maximal in a precise sense.

4.1. Splittings over finite groups. Let G be a non-elementary word hyper-
bolic group. If it is not one-ended then it splits over a finite group [Sta]. By [Dun],
there is a maximal splitting over finite groups such that each vertex group is finite
or one-ended; when G is torsion-free, it leads to a free product of a free group with
finitely many one-ended groups.

More precisely, the group G acts simplicially on a simplicial tree T with no
edge inversions such that T/G is finite and

– all edge groups are finite;
– all vertex groups are finite or one-ended;

Moreover, the one-ended vertex groups stabilise a nontrivial connected component
of the boundary. Conversely, any nontrivial component of ∂G is stabilised by a
one-ended vertex group.

We call this splitting a DS-splitting.

Proposition 4.1. Let G and H be two quasi-isometric word hyperbolic groups.
Then each infinite vertex group of the DS-splitting of G is quasi-isometric to an
infinite vertex group of the DS-splitting of H, and vice-versa.

This proposition holds very generally for finitely presented groups [PW]. We
provide an elementary proof in our setting.

Proof. Let Φ : G → H be a quasi-isometry. According to Theorem 3.2, it
extends as a quasi-Möbius homeomorphism φ : ∂X → ∂Y . In particular, φ maps
connected components of ∂X to components of ∂Y . Therefore, if Gv is a one-ended
vertex of G in its DS-splitting with limit set Λv, then φ(Λv) is a component of ∂H,
hence is stabilised by a one-ended vertex group Hv. Proposition 3.11 implies that
Gv and Hv are quasi-isometric. �
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4.2. Splittings over 2-ended groups. We summarize briefly the JSJ decom-
position of a non-Fuchsian one–ended word hyperbolic group G following Bowditch
[Bow1].

There exists a canonical simplicial minimal action of G on a simplicial tree
T = (V,E) without edge inversions such that T/G is a finite graph and which
enjoys the following properties, cf. [Bow1, Thm 5.28, Prop. 5.29]. If v is a vertex
(resp. e an edge), we will denote by Gv (resp. Ge) its stabilizer, and by Λv (resp.
Λe) the limit set of Gv (resp. Ge). Let Ev denote the set of edges incident to
v ∈ T . Every vertex and edge group is quasiconvex in G. Each edge group Ge is
two-ended and ∂G \Λe is not connected. A vertex v of T belongs to exactly one of
the following three exclusive types.

Type I (elementary).— The vertex has bounded valence in T . Its
stabilizer Gv is two-ended, and the connected components of ∂G \Λv are
in bijection with the edges incident to v.
Type II (surface).— The limit set Λv is cyclically separating and the
stabilizer Gv of such a vertex v is a non-elementary virtually free group
canonically isomorphic to a convex-cocompact Fuchsian group. The inci-
dent edges are in bijection with the peripheral subgroups of that Fuchsian
group.
Type III (rigid).— Such a vertex v does not belong to any class above.
Its stabilizer Gv is a non-elementary quasiconvex subgroup. Every local
cut point of ∂G in Λv is in the limit set of an edge stabilizer incident to v
and Λv is a maximal closed subset of ∂G with the property that it cannot
be separated by two points of ∂G.

By construction, no two vertices of the same type are adjacent, nor surface type
and rigid can be adjacent either. This implies that every edge contains a vertex of
elementary type. The action of G preserves the types. Therefore, the edges incident
to a vertex v of surface type or rigid type are split into finitely many Gv-orbits.

Proposition 4.2. Let G and H be two quasi-isometric word hyperbolic groups.
Then each vertex and edge group of the JSJ-splitting of G is quasi-isometric to a
vertex and edge group of the JSJ-splitting of H respectively, and vice-versa.

Proof. We proceed as in Proposition 4.1. Let Φ : G→ H be a quasi-isometry.
According to Theorem 3.2, it extends as a quasi-Möbius homeomorphism φ : ∂X →
∂Y . In particular, φ maps the local cut points of ∂X to the local cut points of ∂Y .
Therefore, since the JSJ decomposition is built from the local cut points of the
boundaries of the groups, φ will map limit sets of edge groups to limit sets of edge
groups, limit sets of vertex groups to limit sets of vertex groups of the same type.
Thus, if Gv is a vertex group of G in its JSJ-splitting with limit set Λv, then φ(Λv)
is the limit set of a vertex group Hv in the JSJ-decomposition of H. Proposition
3.11 implies that Gv and Hv are quasi-isometric. �

5. Strong accessibility

What follows is inspired by similar properties of compact 3-manifolds, cf. § 2.
We first show how to combine the DS- and JSJ- splittings together, following Drutu
and Kapovich [DK].



QUASI-ISOMETRIC RIGIDITY OF CONVEX-COCOMPACT KLEINIAN GROUPS 11

Proposition 5.1. Let G be a word hyperbolic group. If G is not quasi-isometric
to a Fuchsian group, then G acts on a simplicial tree T with no edge inversions such
that

– the quotient T/G is finite;
– the edge stabilizers are elementary groups;
– there is an equivariant projection p : T → TDS such that p−1(v) provides

the JSJ-decomposition of Gv, for each non-Fuchsian one-ended vertex.

Moreover, this splitting is maximal with respect to elementary groups.

Proof. Let us consider the DS-splitting of G: it is given by a graph of groups
GDS = (ΓDS , {Gv}, {Ge}, Ge ↪→ Gt(e)), whose fundamental group is isomorphic to
G and where the edge groups are all finite and the vertex groups are either finite or
one-ended. LetGv be a non-Fuchsian one-ended vertex group, and let us consider its
JSJ-decomposition given by a graph of groups Gv = (Γv, {Hs}, {Ha}, Ha ↪→ Ht(a)).
We wish to refine GDS and insert Gv.

Let e be an incident edge to v in ΓDS . Note that Ge is a subgroup of Gv hence
acts on the Bass-Serre tree Tv associated to Gv. Since Ge is finite, it admits a fixed
vertex point s′ ∈ Tv. Its stabilizer Hs′ is conjugate to a vertex group Hs of Gv by
an element hs′ ∈ Gv.

We may now define a new graph of groups G = (Γ, {Gv}, {Ge}, Ge ↪→ Gt(e))
as follows. We let Γ be the union (Γ \ {v}) ∪ Γv that we tie together by attaching
each incident e in ΓDS to the vertex s ∈ Γv defined above. One may check that the
natural embeddings yield a graph of groups whose fundamental group is isomorphic
to G; see [DK, § 18.6] for details.

Proceeding similarly for each non-Fuchsian one-ended vertex group in ΓDS
provides us with the desired splitting. �

Let G be a word hyperbolic group. Applying Proposition 5.1, we let H1 denote
all the vertex groups in the quotient T/G and H′1 ⊂ H1 be those which are non-
Fuchsian.

We proceed inductively so that Hn+1 consists of the set of isomorphic classes
of vertex groups appearing in the decomposition of vertex groups in H′n given by
Proposition 5.1 and let H′n+1 ⊂ Hn+1 be those classes of groups that are non-
Fuchsian.

A group G is strongly accessible if the process ends i.e., H′n consists of one-
ended groups which are either Fuchsian or such that their boundary have no local
cut points. The collection of conjugacy classes ∪Hn defines a hierarchy of the group
G and the smallest such ` with the property thatH` consists of groups which cannot
be split further is the depth of the hierarchy.

If G has no element of order two, then this process stops in finite time [DP, LT],
exactly as for Haken manifolds which are cut into finitely many balls. We will not
need these results here, but rely instead on the following quasi-isometric invariance
property, which may be of independent interest.

Theorem 5.2 (QI-invariance of strong accessibility). Let G1 and G2 be two
quasi-isometric word hyperbolic groups. Then G1 and G2 are either both strongly
accessible or not. In the former case, the depth of their hierarchy coincide and,
for all n ≥ 1, each group in Hn(G1) is quasi-isometric to a group in Hn(G2), and
vice-versa.
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Proof. Let us proceed by induction on the depth. Let us assume that G1 is
either virtually free, virtually Fuchsian, or with no local cut points. Then the same
holds for G2 since the boundaries are homeomorphic. Let us now assume that G1

has a hierarchy of depth ` ≥ 1. Let us apply Proposition 5.1 to G1 and G2. Note
that Proposition 4.1 implies that G1 and G2 have the same vertex groups up to
quasi-isometry in their respective DS-splittings. Moreover, Proposition 4.2 implies
that the vertex groups appearing in the JSJ splittings from the above vertex groups
are also the same up to quasi-isometry. Therefore, groups in H1(G1) are quasi-
isometric to groups in H1(G2) and vice-versa. Furthermore, elements of H1(G1)
have depth at most `− 1, so we may apply the induction hypothesis. �

6. Quasi-isometric rigidity

Let G be a finitely generated group quasi-isometric to a convex-cocompact
Kleinian group. The basic idea is to build a compact 3-manifold with fundamental
group isomorphic to (a finite-index subgroup of) G and then to apply Thurston’s
uniformization theorem. This construction will proceed by induction on the hier-
archy of G, and will require to have a regular JSJ decomposition as defined below.
In general, a given group does not admit such a decomposition. We will show that
we may obtain this property for a suitable subgroup of finite-index. Its existence
will be granted by the separability of its quasiconvex subgroups (Theorem 6.2).

6.1. Regular JSJ decomposition. Let M = MK be a hyperbolizable mani-
fold with incompressible boundary so that ΛK is connected. Let us assume that M
is built from gluing several manifolds M1, . . . ,Mk to a solid torus T along annuli
whose cores are homologous to multiples of the core of T . In this case, these curves
have to be all parallel in ∂T . By taking a suitable finite covering M ′ = MK′ of M ,
we may then assume that each one of them generate the fundamental group of the
torus. Thus, the fundamental group of such a lifted annulus A is generated by a
primitive element g of K ′. Its limit set Λg splits ΛK into finitely many components,
which are fixed under the action of g. This leads us to the following notion:

Definition 6.1 (Regular JSJ decomposition). Let G be a one-ended word hy-
perbolic group and let us consider its JSJ decomposition. We say it is regular if the
following properties hold:

– G is torsion free;
– every two-ended group H which appears as a vertex group is isomorphic

to Z and stabilizes the components of ∂G \ ΛH .

Let us assume that the decomposition of a group G is regular and let Gv be a
vertex group of elementary type Gv; since its action fixes the components of ∂G\Λv,
it is generated by a primitive element.

6.2. Separability properties. A subgroup H is separable in its ambient
group G if, for any g ∈ G \ H, there is a finite index subgroup G′ in G which
contains H but not g.

Theorem 6.2. Let G be a finitely generated group quasi-isometric to a convex-
cocompact Kleinian group. Then its quasiconvex subgroups are separable.

This theorem uses the recent breakthroughs of Wise, Agol, and their collabo-
rators on word hyperbolic groups acting on CAT(0) cube complexes [Wis, Ago].
We only sketch the proof.
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Proof. We use the QI-invariance of the strong accessibility together with
Corollary 3.10 to prove that G admits a so-called virtual quasiconvex hierarchy.
This implies according to Wise that the group is a so-called virtual special group,
hence its quasiconvex subgroups are separable according to [HW]. See [Häı, § 8]
for details. �

Separability is used to “clean” our group as explained by the next proposition
and its corollaries. See [Häı, Prop. 7.2] for a proof.

Proposition 6.3. Let A′ < A < G be groups with [A : A′] < ∞ and A′

separable in G. Then there exist subgroups A′′ and H with the following properties:

(1) H is a normal subgroup of finite index in G;
(2) A′′ = H ∩A′ is a normal subgroup of finite index in A ;
(3) for all g ∈ G, (gAg−1) ∩H = gA′′g−1.

As a first application, we obtain from the finiteness of the conjugacy classes of
torsion elements:

Corollary 6.4. A residually finite word hyperbolic group is virtually torsion-
free.

Another simple application of Proposition 6.3 is the following reduction conse-
quence.

Corollary 6.5. Let G be the fundamental group of a finite graph of groups
G = (Γ, {Gv}, {Ge}), where each edge group is quasiconvex in G. Let Av < Gv be
subgroups of finite index. If the quasiconvex subgroups of G are separable, then G
contains a normal finite index subgroup G′ such that, for any g ∈ G, gGvg

−1 ∩G′
is a finite index subgroup of gAvg

−1.

Proof. It follows from [Bow1, Prop. 1.2] that the vertex groups are quasicon-
vex as well. We apply Proposition 6.3 to each triple (Av, Gv, G) to obtain finitely
many finite index subgroups G′v of G and we let G′ denote their intersection. The
conclusion follows. �

We now derive the virtual regularity of the JSJ decomposition.

Corollary 6.6. Let G be a finitely generated group quasi-isometric to a convex-
cocompact Kleinian group. Then G contains a finite index subgroup such that its
one-ended vertex groups in the DS-splitting have a regular JSJ-decomposition.

Proof. It follows from Theorem 6.2 that every elementary group is separable.
In particular, G contains a finite index subgroup H ′ which is torsion-free by Corol-
lary 6.4. It follows that its action on ∂G is faithful. Let K ′ be one of the factors of
the DS-splitting of H ′ which is one-ended but not Fuchsian.

Let us consider a set of representatives of elementary vertex groups {K ′v} arising
from its JSJ decomposition. Each one of them contains a cyclic subgroup Av of
finite index which stabilizes all the components of ∂K \ Λv. Corollary 6.5 applied
to (Av, Gv) produces a normal subgroup H of finite index in G. By construction,
the vertices appearing in the DS-splitting of H admit a regular JSJ-decomposition;
see [Häı, Thm 7.1] for details. �
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6.3. Acylindrical pared groups. We adapt the notion of acylindrical pared
3-manifolds to groups. This point of view was first developed by Otal for free
groups in [Ota]. Let G be a nonelementary word hyperbolic group. A paring will
be given by a finite malnormal collection PG = {C1, . . . , Ck} of maximal 2-ended
groups i.e., if Ci ∩ (gCjg

−1) is infinite for some i, j ∈ {1, . . . , k} and g ∈ G, then
i = j and g ∈ Ci and such that G does not split over them. We will say that the
paring is acylindrical if, whenever G splits over an elementary group H, the paring
PG does not split to define a paring of vertex groups — up to conjugacy.

Fact 6.7. Let G be a non-Fuchsian one-ended word hyperbolic group with a
regular JSJ decomposition. Let v be a vertex from its JSJ decomposition of rigid
type and Ev denote the edges incident to v. Then (Gv, {Ge, e ∈ Ev/Gv}) is an
acylindrical pared group.

This fact follows from the maximality of the decomposition.

Note that an acylindrical pared compact hyperbolizable 3-manifold (M,PM )
gives rise to a canonical acylindrical pared group (K,PK) by letting K = π1(M) and
PK denote the fundamental groups generated by the core of the annuli composing
PM . A quasi-isometry between two acylindrical pared groups (G,PG) and (H,PH)
will be given by a quasi-isometry Φ : G→ H such that, for any Cj ∈ PG, Φ(Cj) is
at bounded distance from a conjugate of an element from PH , and if any element
of PH is at bounded distance from the image of a conjugate of PG. If G′ is a
finite index subgroup of an acylindrical pared group (G,PG), then we associate
an acylindrical paring to G′ by considering a finite set of representative classes of
{G′ ∩ gCg−1, g ∈ G,C ∈ PG}. We will say that an acylindrical pared manifold
(M,PM ) is quasi-isometric to an acylindrical pared group (G,PG) if there is a quasi-
isometry between its canonical acylindrical pared group (K,PK) and (G,PG).

Let us say that an acylindrical pared group (G,PG) is geometric if there is a
compact hyperbolic acylindrical pared 3-manifold (M,P ) such that its canonical
acylindrical pared group is isomorphic to (G,PG) with G = π1(M).

Theorem 1.1 will follow from the following variant:

Theorem 6.8 (pared quasi-isometric rigidity). An acylindrical pared group
(G,PG) is virtually geometric if it is quasi-isometric to a compact hyperbolic acylin-
drical pared 3-manifold (M,P ).

The proof will be established by induction on the depth of the hierarchy of the
group G.

The case of an acylindrical pared free group has been established by Otal [Ota].
Let us recall his theorem. Let (G,P ) be an acylindrical pared word hyperbolic
group. Define on ∂G an equivalence relation ∼P as follows: let x ∼P y if, either
x = y or if there is a subgroup C ∈ P , an element g ∈ G such that {x, y} = g(ΛC).
Set ∂PG = ∂G/ ∼P to be the quotient of ∂G by this relation ∼P . This is always
Hausdorff compact, connected and locally connected set.

Theorem 6.9 (Otal). An acylindrical pared free group (F, P ) is geometric if
∂PF is planar.

Corollary 6.10. An acylindrical pared free group (F, P ) quasi-isometric to
an acylindrical pared handlebody (M,PM ) is geometric.
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Proof. Let (K,PK) be the canonical acylindrical pared group associated to
(M,P ). According to [Ota, Proposition 0], ∂PK

K is planar, hence ∂PF as well since
the quasi-isometry Φ : (F, P ) → (K,PK) defines a homeomorphism φ : ∂F → ΛK
which maps the ∼P -classes to ∼PK

-classes. Therefore, Theorem 6.9 applies. �

We may now prove the main theorem.

Proof. (Theorems 1.1 and 6.8) We first reduce the proof of Theorem 1.1 to
the proof of Theorem 6.8. Let G be a group quasi–isometric to a convex-cocompact
Kleinian group K. We might as well assume that G does not fall into one of the
known cases mentioned in the introduction. Let us consider the splitting provided
by Proposition 5.1 and its corresponding action G on T . Propositions 4.1 and 4.2
imply that each vertex group is quasi-isometric to a convex-cocompact Kleinian
group. By Fact 6.7, the rigid vertices are canonically pared and quasi-isometric to
an acylindrical pared manifold. Assuming for the time being Theorem 6.8, we may
even conclude that the rigid vertices are virtually geometric.

Theorem 6.2, Corollaries 6.6 and 6.5 enable us to assume that, up to a finite
index subgroup, G admits a regular JSJ decomposition with rigid vertex pared
groups (Gv, {Ge, e ∈ Ev/Gv}) isomorphic to acylindrical pared manifolds (Mv, Pv).
If v is of elementary type, then we associate a solid torus with parallel pairwise
disjoint annuli on its boundary parametrized by the edges incident to v. If v is
of surface type, then Theorem 3.8 implies that Gv is canonically isomorphic to a
Fuchsian group Fv such that Sv = D/Fv is a surface with holes parametrized by
Ev/Gv; we then consider Mv = Sv × [0, 1] with annuli Ae corresponding to the
I-fibers of the holes. The finite graph T/G provides us with a manual to build a
3-manifold M with fundamental group isomorphic to G. We first glue the Mv’s
along annuli in order to obtain the vertices of the DS-decomposition, and then glue
the resulting manifolds along disks [SW]. Thurston’s hyperbolization theorem for
Haken manifolds shows that M is hyperbolizable. This ends the proof of Theorem
1.1.

We now pass to the proof of Theorem 6.8. Let (G,PG) be a group quasi–
isometric to a pared manifold (M,P ) and let K be a convex-cocompact Kleinian
group representing its fundamental group. Since K is pared, its limit set is a
proper subset of the sphere. According to Corollary 6.4 we may assume that G is
torsion-free. Theorem 5.2 implies that G is strongly accessible so we may proceed
by induction on the depth of its hierarchy.

If the depth is zero, then G is either

• free, to which we associate a handlebody; or
• Fuchsian, to which we associate an I-bundle by Theorem 3.8; or
• a carpet group, to which we associate an acylindrical manifold by Corol-

lary 3.10.

We easily obtain an acylindrical pared manifold when G is free (Corollary 6.10),
Fuchsian or a carpet group.

Let G be of depth n + 1, with n ≥ 0, and let us assume that the theorem is
established up to rank n. As for Theorem 1.1, the induction hypothesis enables us
to assume that G admits a regular JSJ-decomposition and that each vertex group
is the fundamental group of a pared manifold (Nv, Qv).

The graph of groups coming from Proposition 5.1 provides us with a manual
to build a 3-manifold N with fundamental group isomorphic to G by gluing the
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Nv’s along disks or annuli [SW]. In general, there are several choices for this last
step. We need to make a suitable choice to make sure that N will admit a paring
associated to PG, cf § 7.1 for justifying the necessity of this step. The choice of

the gluings will be made according to the embedding of ∂G in Ĉ provided by its
quasi-isometry with K.

Let us explain how we use K to construct N . It follows from [Ohs] that
there exists a Kleinian group K ′ isomorphic to K such that each element of PK
has become parabolic and its limit set is homeomorphic to ∂PK

K. The canonical

projection ΛK → ∂PK
K gives rise to a monotone map p : (Ĉ,ΛK)→ (Ĉ,ΛK′).

The quasi-isometry Φ : (G,PG)→ (K,PK) yields a homeomorphism φ : ∂G→
ΛK which realizes a correspondence between the limit sets of gCg−1, where g ∈ G
and C ∈ PG, with the limit sets of kDk−1, where k ∈ K and D ∈ PK . Thus, we
obtain a homeomorphism ϕ : ∂PG

G → ΛK′ which enables us to make G act by
homeomorphisms on ΛK′ .

Since (K,PK) is acylindrical, it follows that MK′ has no essential annulus,
so the closure of no component of ΩK′ separates ΛK′ , cf. [Thu1, Theorem 2].
Therefore, the action of G on ΛK′ maps the boundaries of the components of ΩK′

to the boundaries of (possibly other) components of ΩK′ . It follows that the action

of G on ΛK extends to a convergence action on Ĉ of G, cf. [Häı, Prop. 6.2].
This action enables us to realize geometrically the splitting of G given by Propo-

sition 5.1: by [MS, Theorem 3.2], one may first find finitely many simple closed
curves on ΩK/G whose lifts form a collection Γ1 of pairwise disjoint Jordan curves

on Ĉ; see also [AbM]. These curves realize the DS-splitting of G. Furthermore,
the JSJ splitting of the G-stabilizers of non-trivial components of ΛK different from

circles can also be realised on Ĉ by considering all the hyperbolic geodesics in ΩK
joining the fixed points of the edge groups; this defines a second family Γ2 of curves.
Let Γ = Γ1 ∪ Γ2: we define a tree T by considering

(a) the vertices to be the components of Ĉ \ ∪γ∈Γγ; to which we need to add
the elementary vertices of the JSJ splittings; the latter are the fixed points
of loxodromic elements which split a component into at least three com-
ponents or which are at the intersection of two components corresponding
to vertices of surface and rigid types;

(b) edges correspond to curves γ ∈ Γ which are in the common boundary of
the vertices, or on the boundary of one component and joining the fixed
points of an elementary vertex.

We leave the reader check that G acts simplicially on T and that its action is
isomorphic to the one given by Proposition 5.1.

We may now build a manifold N so that ∂N is homeomorphic to ΩK/G. Let
v ∈ T be a vertex and e ∈ Ev be an edge incident to v. This edge corresponds to
a curve γ ∈ Γ which defines a simple closed curve γ ⊂ ∂Nv. Either it bounds a
disk De ⊂ ∂Nv, or it is homotopically non-trivial and hence can be thickened to
become an annulus Ae ⊂ ∂Nv. Now the graph of groups tells us how to glue the
different vertex manifolds Nv’s, v ∈ T/G, along the disks and annuli associated to
the class of edges Ev/Gv. Let N be the manifold obtained by this construction.
By construction, ∂N is homeomorphic to ΩK/G.

It remains to check that PG provides a paring of N . Let us first observe that
the elements of PG are maximal 2-ended subgroups of G, hence they are cyclic and
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generated by primitive elements. Note that PK gives rise to a collection of pairwise
disjoint curves in ΩK joining pairs of fixed points of loxodromic elements. These
points are also fixed points by the conjugates of PG coming from the action of G on

(Ĉ,ΛK). Since ∂N is homeomorphic to ΩK/G, this implies that PG define curves
on ∂N which are pairwise disjoint. So PG defines a paring Q on N . The paring is
acylindrical since this is the case for K.

Thurston’s hyperbolization theorem for Haken manifolds shows that N is hy-
perbolizable. This proves that (G,PG) is virtually geometric. �

6.4. Groups with homeomorphic boundaries. Since the proof of Theo-
rem 1.2 is essentially the same as Theorem 1.1, we only sketch the argument. The
main observation is that the hierarchy provided by Proposition 5.1 only depends on
the topology of the limit set. Therefore, Theorem 5.2 still holds in this setting: if
G is a word hyperbolic group with boundary homeomorphic to the one of a convex-
cocompact Kleinian group, then G is strongly accessible since K is, the depth of
their hierarchy coincide and, for all n ≥ 1, the boundary of each group in Hn(G)
is homeomorphic to the boundary of a group in Hn(K), and vice-versa. Assuming
that K is furthermore torsion free and that ΛK contains no subset homeomorphic
to the Sierpiński case implies that the hierarchy’s leaves contain only free groups,
Fuchsian groups and elementary groups. Therefore, G will admit a quasiconvex
hierarchy in the sense of Wise, so the conclusion of Theorem 6.2 and its corollaries
will also hold in our context. Theorem 1.2 may be established by induction on the
length of the hierarchy. The initial step consists in saying that a word hyperbolic
whose boundary is either empty, consists of two points, a Cantor set or a circle is
virtually isomorphic to a Fuchsian group: this was already known, cf. the introduc-
tion. The induction step proceeds as above: first construct a finite index subgroup
G′ in order to get regular JSJ decompositions of its maximal one-ended subgroups
with geometric pared rigid subgroups, then apply the induction hypothesis to con-
struct a compact 3-manifold with fundamental group isomorphic to G′ and apply
Thurston’s uniformization theorem.

7. Examples

We provide examples explaining some of the difficulties that have to be dealt
with.

7.1. Unstability of the residual limit set. In the proof of Theorem 6.8, we
were very careful in the construction of the manifold M to ensure that PG would
be associated to a paring. This question is related to the residual limit set RG of
a Kleinian group, defined by Abikoff as those points of ΛG which are not on the
boundary of any component of ΩG.

Let G be a finitely generated Kleinian group. According to Abikoff [Abi],
the residual limit set has two different kinds of points: those which correspond to
singleton connected components z of ΛG for which there are components Λn, n ≥ 1,

of ΛG, and components Ωn of Ĉ \ Λn such that (Ωn)n defines a nested family of
disks and ∩Ωn = {z}, and those points which belong to a non trivial connected
component of ΛG. In both cases, they are characterized by the fact that we may

find a nested sequence of Jordan curves γn ⊂ ΛG, components Ωn of Ĉ \ γn such
that ∩Ωn is a residual point.
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We give two examples that show that a homeomorphism between the limit sets
of two isomorphic convex-cocompact Kleinian groups need not preserve the residual
limit sets.

Let us denote by Sg a compact, closed, orientable surface of genus g ≥ 0, and
S∗g the complement of an embedded closed disk in Sg.

7.1.1. The residual set of an infinitely ended Kleinian group. Let us first con-
sider a hyperbolic compact 3-manifold M1 with at least two non-homeomorphic
boundary components S1 and S′1. Let M2 = Sg × [0, 1]. Let us pick embedded
closed disks D1 ⊂ S1(⊂ ∂M1), D′1 ⊂ S′1(⊂ ∂M1) and D2 ⊂ Sg × {0}(⊂ ∂M2). Let
M be the connected sum of M1 and M2 obtained by identifying D1 and D2 and M ′

by identifying D′1 with D2. By van Kampen’s theorem, both fundamental groups
are isomorphic to the free product of the fundamental groups of both manifolds.
Let K and K ′ be two convex-cocompact Kleinian groups uniformizing M and M ′

respectively.
Now, let us consider homotopically non-trivial curves γ1 ⊂ S1(⊂ ∂M1) and

γ2 ⊂ Sg × {0}(⊂ ∂M2). In M , their homotopy classes can be concatenated into a
curve γ in ∂M . Its class defines a loxodromic element of K whose fixed points are
non-residual, since it represents a boundary curve. On the other hand, in M ′, their
concatenation defines a loop which has to go through the interior of M1 to connect

both pieces. Thus, any lift in its universal cover M̃ ′ has to cross infinitely many
lifts of M1. This means that, in K ′, this curve represents a loxodromic element
whose fixed points are in different nested intersections of lifts of S1, hence in RK′ .

7.1.2. The residual set of a one-ended Kleinian group. We consider Ng =
S∗g × [0, 1] for g = 1, . . . , 4 and let us denote by Ag the boundary of Ng which is
homeomorphic to an annulus. Let N0 be a solid torus to which we consider 4 paral-
lel and disjoint annuli B1, . . . , B4 whose core curves represent generators of π1(N0).
We let N be the manifold obtained by identifying Ag with Bg for g = 1, . . . , 4, and
N ′ by identifying A1 with B1, A4 with B4, A2 with B3 and A3 with B2. Both
fundamental groups are isomorphic by van Kampen’s theorem. These manifolds
are hyperbolizable by Thurston’s theorem and one-ended by construction.

We now let γj be a non trivial curve in S∗j×{0} for j = 1, 2. Their concatenation
defines in N a loxodromic element represented by a boundary curve, so its fixed
points are not in the residual set. In N ′, since the cyclic order is different, this
curve is now represented by a loxodromic element whose fixed points cannot lie on
the boundary of a component, hence are residual.

7.2. A non-Kleinian group quasi-isometric to a Kleinian group. We
recall a construction of Kapovich and Kleiner which provides us with a torsion-free
word hyperbolic group which is quasi-isometric to a convex-cocompact Kleinian
group but is not isomorphic to a convex-cocompact Kleinian group: this implies
that it is necessary, in some cases, to pass to a subgroup of finite index, and that
it is not an artifact of the proof.

Following [KK], let us consider a 2-torus with two holes S = T2 \ (D1 ∪D2),
and let α represent ∂D1 and β = ∂D2. Define X as the complex obtained from S
by gluing β to α by a degree 2 covering map β → α.

The fundamental group of S is isomorphic to F3 =< a, b, c > where we can
choose c to be represented by α. The other boundary component can be expressed
as β = caba−1b−1 = c[a, b].
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The fundamental group of X is obtained by an HNN-extension of π1(S):

π1(X) = F3∗Z =< a, b, c, t|tc2t−1 = c[a, b] > .

As such, G = π1(X) is a torsion-free group. It is also word-hyperbolic according
to Bestvina-Feighn’s combination theorem.

The JSJ decomposition is given by a graph with two vertices and two edges
connecting the two vertices. The first vertex corresponds to the fundamental group
of S, labeled by F3, the second to a cylinder with cyclic fundamental group Z =<
γ >. Note that F3 corresponds to a surface group in this decomposition.

The first edge identifies one boundary component to α, yielding the morphism
c 7→ γ, and the second edge identifies the other boundary component to β2, yielding
c[a, b] 7→ γ2.

The limit set of c splits ∂G into three components, and its action exchanges
the two components attached at β and keep fixed the third one. Therefore, this
decomposition is not regular. It turns out that G cannot be a 3-manifold group
because of the identification α2 = β which should take its origin in an essential
annulus or Möbius band.

NonethelessG contains a finite-index subgroupG′ with a regular JSJ-decomposition.
This can be seen topologically by considering a finite covering S′ → S which has
degree 1 over α, degree 2 over β and such that there are twice the number of
preimages of α than of β.

For the group G′, we may build an irreducible, orientable, Haken 3-manifold
with fundamental group G′. See [KK, § 8] for more details.
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présentation finie. Topology 40(2001), 617–629.
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