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Abstract

This article is a survey on actions of quasi-Möbius groups. We focus on their
applications to Riemannian geometry —in particular hyperbolic geometry— and to
the geometry of metric compact spaces. We prepare these applications by providing
ample background on quasi-Möbus maps and quasiconformal geometry.
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2.1 Completion and unbounded spaces . . . . . . . . . . . . . . . . . . 6

2.2 Quasisymmetric maps . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Moduli of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Analytic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Topological characterizations of quasi-Möbius maps . . . . . . . . . 12
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1 Introduction

A quasi-Möbius map is an injective continuous map h : X → Y between metric
spaces X and Y supplied with a homeomorphism θ : R+ → R+ —a distortion
function— such that, for any distinct points x1, x2, x3, x4 ∈ X,

[h(x1) : h(x2) : h(x3) : h(x4)] ≤ θ([x1 : x2 : x3 : x4])

where

[x1 : x2 : x3 : x4] =
|x1 − x2| · |x3 − x4|
|x1 − x3| · |x2 − x4|

denotes the metric cross-ratio. The map h is more precisely a θ-quasi-Möbius
map. When θ = Id , then h is a Möbius map.

This class was explicitly defined and studied by J. Väisälä [Väi2], but they
have appeared implicitly before, for instance in G. Mostow’s work on rigidity and
in J. Ferrand’s work on the group of conformal transformations of Riemannian
manifolds.

The main objectives of this survey are to show that this is a natural class of
groups, that they appear in many different situations and that they have stim-
ulated interesting research. There are several reasons which make these groups
appealing and useful. Here is a sample.

• Quasi-Möbius maps have different facets: they are very close to different
classes of maps, in particular quasiconformal and quasisymmetric maps so
that they have interesting infinitesimal properties and global ones as well.
They have the advantage of being defined by global properties compared to
the former, and to have richer dynamics compared to the latter.

• They form an intermediate class between the more rigid class of conformal
maps and the too flexible class of homeomorphisms.

• Since they are defined in metric terms, quasi-Möbius maps can be considered
on very general classes of spaces.

These groups play at least three main roles.

• They capture the global behavior of conformal mappings on compact mani-
folds.

• They are traces at infinity of isometries (and more generally quasi-isometries)
of hyperbolic spaces, so they capture the large scale geometry of groups
acting by isometries on hyperbolic spaces.
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• A compact metric space which supports a large group of quasi-Möbius map-
pings enjoy self-similarity features.

This survey will address the following questions and problems, and develop the
following aspects.

1. Determine when an action of a group of homeomorphisms is conjugate to
that of a group of quasi-Möbius maps, and when the latter is conjugate to a
group action of Möbius maps.

2. Given a metric space, describe the group of quasi-Möbius maps.

3. Classify metric spaces with large groups of quasi-Möbius maps.

4. Use quasi-Möbius group actions to describe the geometry of the spaces on
which they act.

Outline of the paper.— In the next section, we recall the main properties of
quasi-Möbius mappings between Riemannian manifolds and provide several char-
acterizations from different points of view. We also introduce some fundamental
tools: the notion of moduli of family of curves which are the most powerful con-
formal invariants.

In Section 3, we study the dynamics of quasi-Möbius mappings —these are con-
vergence actions, and we review some results characterizing quasi-Möbius groups
in dynamical terms. We also recall the Hausdorff-Gromov convergence of metric
spaces which enables to apply compactness arguments.

Section 4 focuses on actions on Riemannian manifolds. After adding some
specific properties, we address the question of determining when a quasi-Möbius
group is conjugate to a Möbius group. We show the role of quasi-Möbius maps in
J. Ferrand’s solution to the Lichnerowicz conjecture. We also consider groups on
non-compact manifolds. In some cases, we show how conformal invariants can be
used to obtain a metric for which quasi-Möbius maps become bi-Lipschitz. The
last paragraph is concerned with the quasiconformal homogeneity of manifolds. It
measures in some sense the size of the group of quasiconformal mappings.

Section 5 is devoted to actions on metric spaces. We describe quantitative
geometric properties of metric spaces which are preserved under quasi-Möbius
maps. In particular, we introduce the conformal gauge of a metric space and its
conformal dimension. We also provide metric characterizations of quasi-Möbius
deformations of the triadic Cantor set, the circle and more generally of spheres.
Loewner spaces are introduced. They form an important class of metric spaces
on which quasi-Möbius maps retain most of their properties. It will enable us to
develop differential calculus in the sense of Cheeger, and to generalize some results
from the Riemannian setting. We also study properties of compact metric spaces
which carry a large group of uniform quasi-Möbius maps. We discuss these issues
in the context of subRiemannian manifolds and draw some rigidity phenomena.

The relationships between quasi-Möbius groups and hyperbolicity are discussed
in Section 6. We make the correspondence between quasi-Möbius maps and quasi-
isometries. This implies that quasi-Möbius invariants are quasi-isometry invari-
ants. Several applications are given, in particular to the classification of negatively
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curved Riemannian manifolds. We focus on rank one symmetric spaces, homoge-
neous manifolds of negative curvature and low dimensional manifolds.

Section 7 deals with actions on functional spaces. Under suitable conditions on
metric spaces, we can adapt a large class of real-valued functional spaces appear-
ing in harmonic analysis and study their invariance under quasi-Möbius maps. It
turns out that these spaces characterize conformal gauges —under suitable condi-
tions. Their relationship to `p-cohomology is also discussed: this is an interesting
instance where hyperbolic methods help understand the quasiconformal geometry
of compact spaces.

The last section of the paper is devoted to actions of quasi-Möbius groups on
compact sets homeomorphic to the Sierpiński carpet. This compact set has a very
large group of homeomorphisms and we show that, depending on the gauge, the
group of quasi-Möbius maps may have very different nature.

Conventions and notation — If X denotes a metric space, we will write the
distance between two points x, y ∈ X by one of the following expressions d(x, y) =
dX(x, y) = |x − y|. The open ball centred at x and of radius r > 0 is denoted by
B = B(x, r) = {y ∈ X, |x−y| < r} and the closed ball B(x, r) = {y ∈ X, |x−y| ≤
r}. Note that the closed ball may be larger than the closure of the open ball. Given
λ > 0, λB denotes the concentric ball of radius λr: λB = B(x, λr). The diameter
of a set E ⊂ X is diamE = sup{|x− y|, x, y ∈ E}.

A metric space X is proper if its compact subsets correspond to the closed and
bounded subsets of X. A measure µ will always be a Borel regular measure which
gives positive mass to any non-empty open subset and finite mass to any bounded
set. In particular, if X is proper then the measure is a Radon measure.

General bibliography. — There exist many surveys and books on different parts
of this text, which are usually more detailed. We list here a few. Background
on analysis on metric spaces includes [Hen, HKST2]. Hyperbolic metric spaces
and groups are developed for instance in [Gro3, CDP, GdlH]. The relationships
between quasiconformal and hyperbolic geometries are discussed in particular in
[KB, BP3, Bon, Klr, Häı2, McT] and in the survey [Bou7] included in this volume.
Functional spaces invariant under quasi-Möbius mappings will be discussed in the
forthcoming survey [KSS].

Warning. — The topics discussed here correspond to the author’s tastes and are
limited by the author’s knowledge. This holds —unfortunately— for the references
as well. Several parts of the paper concerning rigidity phenomena in hyperbolic
geometry related to quasiconformal geometry are common with M. Bourdon’s sur-
vey. It is my pleasure to refer to his article, especially since it is more detailed in
many places [Bou7].

Acknowledgments. — It is my pleasure to thank Marc Bourdon, Mat́ıas Car-
rasco Piaggio, Gaven Martin, Pierre Pansu, Eero Saksman and Tomás Soto for
their comments on a preliminary version of this text and for sharing their ideas to
me. I thank the editors Lizhen Ji, Athanase Papadopoulos, Shing- Tung Yau for
the opportunuity of publishing this work in this volume.
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2 Properties of quasi-Möbius maps

Let X be a metric space and x1, x2, x3 and x4, with x1 6= x3 and x2 6= x4. Denote
by

κ = [x1 : x2 : x3 : x4] =
|x1 − x2| · |x3 − x4|
|x1 − x3| · |x2 − x4|

the cross-ratio of the four points. Note that if x1 = x4 or x2 = x3, then κ = 1.
Recall that, given a distortion function θ : R+ → R+, a θ-quasi-Möbius map
is an injective continuous map h : X → Y such that, for any distinct points
x1, x2, x3, x4 ∈ X,

[h(x1) : h(x2) : h(x3) : h(x4)] ≤ θ([x1 : x2 : x3 : x4])

When θ is a linear function, then h is easily seen to be locally bi-Lipschitz.

We first provide an interpretation of cross-ratios which is easier to handle
[BnK1, Lemma 2.3].

Lemma 2.1 (Bonk & Kleiner). Let X be a metric space. If x1, x2, x3, x4 are four
distinct points of X, let us consider

〈x1, x2, x3, x4〉 =
min{|x1 − x2|, |x3 − x4|}
min{|x1 − x3|, |x2 − x4|}

.

Then

〈x1, x2, x3, x4〉 ≤ η0([x1, x2, x3, x4]) and [x1, x2, x3, x4] ≤ η1(〈x1, x2, x3, x4〉)

where
η0(t) = t+

√
t2 + t and η1(t) = t(2 + t) .

Most of the properties of quasi-Möbius maps may be established using this
version of the cross-ratio.

2.1 Completion and unbounded spaces

Möbius transformations of the Riemann sphere are the typical examples of quasi-
Möbius maps: in particular, we may observe that this class of maps do not preserve
completeness, cf. z ∈ C \ {0} 7→ 1/z ∈ C \ {0}.

Let us first introduce the one-point compactification of a metric space which
provides us with a first collection of examples of quasi-Möbius maps between metric
spaces.

Proposition 2.2. We have the following two inverse constructions. Let θ(t) =
16t.

• Let (Z,w) be an unbounded pointed metric space. There exists a metric d̂ on

the one-point compactification Ẑ = Z ∪ {∞} such that Id : (Z, d) → (Ẑ, d̂)
is θ-quasi-Möbius and

1

4

d(x, y)

(1 + d(x,w))(1 + d(y, w))
≤ d̂(x, y) ≤ d(x, y)

(1 + d(x,w))(1 + d(y, w))
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with the convention that d(x,∞) =∞ and d(x,∞)/(1 + d(y,∞)) = 1. If Z

is complete then Ẑ is complete.

• Let (X, d,w) be a marked metric space. There exists a metric dw on X \{w}
such that Id : (X \ {w}, d)→ (X \ {w}, dw) is θ-quasi-Möbius and

1

4

d(x, y)

δ(x)δ(y)
≤ dw(x, y) ≤ d(x, y)

δ(x)δ(y)

where δ(x) = d(x,w). If (X, d) is bounded and complete, then (X \ {w}, dw)
is also complete.

The first part is [BnK2, Lemma 2.2] and the second [Häı3, Lemma 4.5].

Let f : X → Y be a quasi-Möbius mapping and let us consider X and Y as
subsets of X̂ and Ŷ . It can be checked using the definitions of cross-ratios that the
image of any Cauchy sequence in X̂ is also a Cauchy sequence in Ŷ and that two
Cauchy sequences in X̂ are equivalent if and only if their images are equivalent
Cauchy sequences. It follows that, adding the points at infinity if necessary, we
may always assume that a quasi-Möbius map is defined in a complete metric space.

We conclude this section with the following corollary that can obtained by
composing both constructions.

Corollary 2.3. There are a constant D and a distortion function θ : R+ →
R+ with the following property. Let X be a (complete) metric space and τ =
(x1, x2, x3) be three distinct points of X; there exists a (complete) bounded metric

dτ such that Id : (X, d)→ (X̂, dτ ) is θ-quasi-Möbius and

1/D ≤ dτ (xi, xj)

diamdτ X̂
≤ D

where i, j ∈ {1, 2, 3} and i 6= j.

2.2 Quasisymmetric maps

We may observe that Möbius maps —hence quasi-Möbius maps as well— do not
enjoy global and uniform bounded distortion properties. We introduce the fol-
lowing class of maps to describe their geometric properties. A homeomorphism
h : X → Y between metric spaces is called quasisymmetric provided there ex-
ists a homeomorphism η : [0,∞) → [0,∞) such that dX(x, a) ≤ tdX(x, b) implies
dY (f(x), f(a)) ≤ η(t)dY (f(x), f(b)) for all triples of points x, a, b ∈ X and all
t ≥ 0 [TV1]; see also [Hen].

The basic distortion bound for quasisymmetric maps is given by the following
lemma [Hen, Prop. 10.8].

Lemma 2.4. Let h : X → Y be an η-quasisymmetric map between metric spaces.
For all A,B ⊂ X with A ⊂ B and diamB <∞, we have diamh(B) <∞ and

1

2η
(

diamB

diamA

) ≤ diamh(A)

diamh(B)
≤ η

(
2

diamA

diamB

)
.
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Another instance is the following precompactness result.

Theorem 2.5. Let η : R+ → R+ be a fixed distortion function, M <∞ and X,Y
be two metric spaces, x, x′ ∈ X. Then

{f : X → Y η-quasisymmetric such that d(f(x), f(x′)) ≤M}

is equicontinuous. Furthermore, any limit of such functions is either constant or
η-quasisymmetric.

We record the following relationships, see [Väi2] for a proof, or apply Lemma
2.1.

Proposition 2.6. Let f : Z → Z ′ be a homeomorphism between proper metric
spaces.

(i) If f is η-quasisymmetric then f is also θ-quasi-Möbius, where θ only depends
on η.

(ii) If f is θ-quasi-Möbius, then f is locally η-quasisymmetric, where η only
depends on θ.

(iii) Let us assume that f is θ-quasi-Möbius. If Z and Z ′ are unbounded, then f is
θ-quasisymmetric. If Z and Z ′ are compact, then assume that there are three
points z1, z2, z3 ∈ Z, such that |zi − zj | ≥ diamZ/λ and |f(zi) − f(zj)| ≥
diamZ ′/λ for some λ > 0, then f is η-quasisymmetric, where η only depends
on θ and λ.

We may deduce the following behavior of sequences of quasi-Möbius maps from
Proposition 2.6 together with Theorem 2.5.

Corollary 2.7. Let us consider a family of uniformly quasi-Möbius embeddings
fn : X → Y between compact metric sets X, Y . Pick distinct points x1, x2, x3 ∈ X.

• either there is a subsequence (fnk)k and a positive size δ > 0 such that
d(fnk(xp), fnk(xq)) ≥ δ for all p 6= q ∈ {1, 2, 3} and (fnk)k is equicontinuous,

• or there is a subsequence (fnk)k and points a ∈ X and b ∈ Y such that
(fnk)k is uniformly convergent to the constant map {b} on compact subsets
of X \ {a}.

2.3 Moduli of curves

We introduce in this paragraph one of the most powerful tools to analyze and
understand quasi-Möbius mappings first in Euclidean spaces, and then in more
general settings, cf. Section 5.2. This notion of moduli of curves was inspired
by electricity and one can find its roots in J.C. Maxwell’s work. Its first form was
defined by A. Beurling in his thesis, and then developed with L. Ahlfors [AB] under
the form of extremal length. It was modified to its actual form, inspired by the
work of B. Fuglede and C. Loewner [Fug, Loe]. This point of view was the starting
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point of J. Heinonen and P. Koskela’s work in general metric spaces [HnK2]. A
general account is given in [Hen].

What makes moduli so useful is the conjunction of the two following phenom-
ena. On the one hand, they are quasi-invariant under quasi-Möbius maps, and on
the other hand, they encode geometric properties of the spaces.

Rectifiable curves.— Let (X, d) be a metric space. A curve γ in X is a contin-
uous map γ : I → X where I is an interval in R. Most of the time, we identify γ
with its image γ(I). If I = [a, b] is a closed interval (in this case we say that γ is
a closed curve), the length of γ : I → R is defined by

`(γ) = sup

N−1∑
i=1

d(γ(ti), γ(ti+1))

where the supremum is taken over all subdivisions a = t1 ≤ t2 ≤ .... ≤ tN = b of I.
If I is not a closed interval, the length of γ is defined by `(γ) = sup `(γ(J)) where
the supremum is taken over all closed subintervals J of I (and so γ(J) is a closed
subcurve of γ). A curve with finite length is rectifiable. It is locally rectifiable if
all its closed subcurves are rectifiable. Any rectifiable curve γ : I → X admits a
decomposition of the form γ = γs◦sγ where sγ : I → [0, `(γ)] is the length function
and γs : [0, `(γ)]→ X is the unique 1-Lipschitz map so that such a decomposition
holds. The curve/map γs is called the arclength parameterization of γ. In this
case, if g : X → [0,+∞] is a Borel function, the integral of g along γ is defined by∫

γ

g(s)ds =

∫ `(γ)

0

g ◦ γs(t)dt.

If γ is locally rectifiable, then∫
γ

g(s)ds = sup

∫
γ′
g(s)ds

where the supremum is taken over all rectifiable subcurves γ′ of γ.

Families of curves.— Let (X, d, µ) be a metric measure space. Let Γ be a curve
family in X and let p ≥ 1. We define the p-modulus of Γ by

modp(Γ) = inf

∫
X

ρpdµ

where the infimum is taken over all Borel functions ρ : X → [0,+∞] such that∫
γ

ρ(s)ds ≥ 1 for any locally rectifiable curve γ ∈ Γ. Such a ρ is called admissible

for the curve family Γ.

Remark 2.8. 1. The p-modulus of the family Γ of all curves that are not locally
rectifiable is zero, since any function ρ : X → [0,+∞] is admissible for Γ.
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2. If Γ contains a constant curve, then there is no admissible function for Γ,
and (by convention) modp(Γ) = +∞.

Theorem 2.9 (Properties of the modulus). Let (X, d, µ) be a metric space and
let p ≥ 1.

(i) modp(∅) = 0;

(ii) If Γ1,Γ2 are two curve families in X with Γ1 ⊂ Γ2, then modp(Γ1) ≤
modp(Γ2);

(iii) If (Γi)i∈N is a countable collection of curve families in X, then modp (∪iΓi) ≤∑
i modp(Γi);

(iv) If Γ, Γ̃ are two curve families in X such that each curve γ ∈ Γ has a subcurve
γ̃ ∈ Γ̃, then modp(Γ) ≤ modp(Γ̃);

(v) Let (Γn)n be an increasing sequence of families of curves. Then, for p > 1,
modp(∪Γn) = lim modpΓn.

Note that properties (i), (ii) and (iii) imply that the p-modulus is an outer mea-
sure on the set of all curves in X (but in general there is no nontrivial measurable
family of curves !).

Condensers and capacities.— A condenser is given by two disjoint compact
connected sets (E,F ). Given a condenser (E,F ), let Γ(E,F ) denote the set of
curves of joining E and F . The p-capacity of (E,F ) is defined by

capp(E,F ) = modpΓ(E,F ) .

2.4 Analytic properties

Given K ≥ 1, a Kquasiconformal map f : (M, g) → (N,h) between Riemannian
manifolds of dimension n ≥ 2, is a homeomorphism which belongs to the local
Sobolev space W 1,n

loc (M,N) and such that

‖Df‖n ≤ KJf a.e.

where Df denotes the differential of f in the sense of distributions, and Jf denotes
its Jacobian determinant.

Ferrand cross-ratios and quasi-Möbius maps.— Given four distinct points
x1, . . . , x4 in a Riemannian manifold (M, g) of dimension n ≥ 2, define

[x1 : x2 : x3 : x4]F = inf
(E,F )

capn(E,F )

where the infimum is taken over all condensers (E,F ) such that {x1, x2} ⊂ E and
{x3, x4} ⊂ F . This cross-ratio is continuous on the set of distinct quadruples,
takes an infinite value if and only if {x1, x2} ∩ {x3, x4} 6= ∅ and vanishes if and
only if x1 = x2 or x3 = x4 [Fer3, Fer6].
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Say that an embedding f : (M, g)→ (N,h) is an F-quasi-Möbius map if there
exists a distortion function θ : R+ → R+ such that

[f(x1) : f(x2) : f(x3) : f(x4)]F ≤ θ([x1 : x2 : x3 : x4]F )

for all quadruples.

Theorem 2.10. Let f : M → N be a homeomorphism between Riemannian
manifolds of dimension n ≥ 2. The following are equivalent.

1. f is an F-quasi-Möbius map;

2. f is quasiconformal;

3. f preserves n-moduli of curves up to a fixed factor.

If f is quasi-Möbius, then f satisfies all the above properties. When the manifolds
are compact, this is an equivalence. When the manifolds are not, then it is an
equivalence if and only if there are increasing homeomorphisms η± : R+ → R+

such that
η−([x1, . . . , x4]) ≤ [x1, . . . , x4]F ≤ η+[x1, . . . , x4])

for all quadruples.

The equivalence between the quasiconformal and the quasi-Möbius properties
holds in particular for Riemannian manifolds (M, g) of dimension n with non-
negative Ricci curvature and upper volume bound volg(B(x, r)) . rn [HnK2,
§ 6.5].

Moreover the following properties hold.

Theorem 2.11. A quasi-Möbius map between Riemannian manifolds of dimen-
sion n ≥ 2 is

1. absolutely continuous i.e., it preserves sets of measure zero;

2. absolutely continuous on almost every curves in the sense that the n-modulus
of the family of curves on which the restriction of f is not absolutely contin-
uous is zero;

3. differentiable almost everywhere.

These properties were first established in dimension 2 after a long succession
of steps. L. Ahlfors, L. Bers, F. Gehring, A. Mori, A. Pfluger, K. Strebel have con-
tributed to this problem. In dimension 3, this is attributed to F. Gehring and
J. Väisälä. They have then been generalized to arbitrary dimension by G.D. Mostow.
The differentiability of quasiconformal homeomorphisms follows from Stepanov’s
theorem in arbitrary dimension (an argument due to F. Gehring and O. Lehto en-
ables to bypass this result in dimension 2). Standard background on these topics
include [Ahl, Väi1].

A conformal diffeomorphism is a diffeomorphism between Riemannian mani-
folds f : (M, g) → (N,h) such that f∗h = eug for some smooth function u. The
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standard Liouville theorem asserts that a conformal diffeomorphism between open
sets of Euclidean spaces of dimension at least three is the restriction of a Möbius
transformation of the extended space. In the realm of quasiconformal geometry,
the Liouville theorem is concerned with the characterization of conformal diffeo-
morphisms among quasiconformal maps.

Theorem 2.12 (Ferrand [Fer4]). A homeomorphism between Riemannian mani-
folds is a conformal diffeomorphism if and only if it is 1-quasiconformal.

This theorem in the context of open subsets of Euclidean spaces follows from
Weyl’s lemma in dimension 2, and is due to F. Gehring [Geh] and Y. Reshetnyak
[Res] in arbitrary dimension. Let us mention the short proof of P. Tukia and
J. Väisälä that a 1-quasiconformal homeomorphism of Sn, n ≥ 2, is conformal
using their compactness properties and the fact that they form a group [TV2].

Remark 2.13. In dimension 1, quasi-Möbius maps and quasisymmetric maps
need not be absolutely continuous. Quasisymmetric maps are characterized by the
fact that their derivative in the sense of distributions is a doubling measure µ i.e.,
there exists a constant C ≥ 1 such that µ((x− 2t, x+ 2t)) ≤ Cµ((x− t, x+ t)) for
all x ∈ R and t > 0, cf. [Tuk1].

2.5 Topological characterizations of quasi-Möbius maps

We provide a characterization in the spirit of [BA, Th. 2], [Geh, Th. 18 and Cor.
8], [Pan2, Prop. 43] and [Pau, § 3]; see also [AH, Cor. 1].

Say a family of pointed functions F = {(X,x)
f−→ (Y, y)} is bi-equicontinuous

if

1. for all ε > 0, there is some α > 0 such that, for any f ∈ F , if d(x, z) ≤ α
then d(f(x), f(z)) ≤ ε and

2. for all α > 0, there is some ε > 0 such that, for any f ∈ F , if d(x, z) ≥ α
then d(f(x), f(z)) ≥ ε.

We associate to F the collection of normalized maps NF as follows: for each

(X
f−→ Y ) ∈ F and each triple τ = (a, b, c) ∈ X3, we associate the normalized

map (fτ , a) by applying Corollary 2.3 to (X, (a, b, c)) and to (Y, (f(a), f(b), f(c)))

and by letting fτ = ((X, dτ )
f−→ (Ŷ , df(τ)).

Proposition 2.14. Let F be a collection of embeddings. There exists θ such that
F is a family of θ-quasi-Möbius mappings if and only if NF is bi-equicontinuous.

Remark 2.15. This criterion also applies when F contains a single map.

3 The topological dynamics of uniformly quasi-
Möbius groups: convergence actions

A convergence group action is an action of a group G on a metrizable compact
space X with the following property: any sequence of distinct elements (gn)n of G
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contains a subsequence (gnk)k which satisfies one of the following two properties:

1. either the sequence (gnk)k is uniformly convergent to a homeomorphism g of
X;

2. or there exist a, b ∈ X such that (gnk)k is a collapsing sequence of base (a, b)
i.e., this subsequence is convergent to the constant map {b} uniformly on
compact subsets of X \ {a},

A convergence group is discrete if case 1. above never occurs. We shall say that
a discrete convergence group is uniform if its action is cocompact on the set of
distinct triples.

Remark 3.1. If X is complete and is non-compact, then any homeomorphism
fixes the point at infinity in X̂. Thus, any collapsing sequence of a convergence
group on X̂ has to contain the point at infinity in its base. If X has at least three
ends, then this is impossible, cf. [Fer7, Appendix]; in such a setting, convergence
groups are all compact.

Corollary 2.7 implies at once:

Theorem 3.2. A group of uniformly quasi-Möbius self-maps of a compact metric
space has the convergence property. In Riemannian manifolds, uniformly F-quasi-
Möbius groups have also the convergence property.

An interesting question is whether the converse holds as well:

Question 3.3. If G is a convergence group acting on a metrizable space, is there
a metric on X compatible with its topology which turns G into a uniform quasi-
Möbius group?

We will provide partial answers in the last paragraph of this section. We
briefly review some properties of convergence actions. In order to analyze the
dynamics of quasi-Möbius groups, we will recall the definition of Hausdorff-Gromov
convergence.

The limit set ΛG of G is the set of points a which belongs to the base of a
collapsing sequence; it is a compact G-invariant subset of X. A convergence group
G is said to be non-elementary if ΛG has at least three points. In this case, ΛG is
a perfect set and the action of G on ΛG is minimal (every orbit is dense).

When G is discrete, the complement ΩG = X \ ΛG is called the ordinary set
and corresponds to the set of points x ∈ X which have a neighborhood V so that
g(V ) ∩ V 6= ∅ for at most finitely many group elements g ∈ G.

3.1 Topological properties

We record some properties which follow from the existence of a uniform conver-
gence action.

We mention a dynamical property which shows how rich is the dynamics of uni-
form convergence groups. This is reminiscent of D. Sullivan’s notion of expanding
covers [Sul3].
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Proposition 3.4 (topological transitivity). Let G be a uniform convergence group
acting on a compact space X. For any open subset U ⊂ X, there exist finitely many
elements g1, . . . , gn ∈ G such that

X =
⋃

1≤j≤n

gj(U) .

This proposition also holds for discrete convergence groups acting on their limit
set.

Corollary 3.5. Let G be a uniform convergence group action acting on a compact
space X. All open sets have the same topological dimension.

The following is a very strong theorem.

Theorem 3.6 (Swarup [Swa]). If X is a connected metrizable space which admits
a uniform convergence group action, then X is locally connected and contains no
cut points.

Low dimensional compact spaces are classified as follows:

Theorem 3.7 (Kapovich & Kleiner [KK]). Let X be a one-dimensional compact,
connected, metrizable space which admits a uniform convergence action. One of
the following exclusive cases occurs.

• X is homeomorphic to the Sierpiński carpet, or

• X is homeomorphic to the Menger sponge, or

• X admits local cut points.

All these cases exist. Let us remark that both the Sierpiński carpet and
the Menger sponge are one-dimensional, connected, locally connected, metrizable,
compact spaces, with no local point. Their only difference is that the former is
planar whereas the latter has no planar open subsets. All these properties charac-
terize both sets up to homeomorphisms. Let us also mention that they are both
universal in the following sense: any one-dimensional connected metrizable com-
pact space can be embedded in the Menger sponge; if it is planar, then it can also
be embedded in the Sierpiński carpet.

The idea of the proof of the theorem is to start with a compact set X with no
local cut point and assume that it contains a planar open subset. The dynamics
enables them to prove that the whole set is planar; more precisely, they show that
any embedded graph has to be planar by pushing it into the planar open set,
thanks to the topological transitivity. Then Claytor’s planarity theorem implies
that the compact set is planar, hence homeomorphic to the Sierpiński carpet [Cly].
The other case is that X has no planar open subset, hence is homeomorphic to
the Menger sponge.

The following result takes its roots in [Fer7].
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Proposition 3.8. Let G be a non-elementary convergence group acting on a com-
pact metrizable space X. If there is some point x ∈ ΛG which has a neighborhood
homeomorphic to Rn for some n ≥ 1, then X is homeomorphic to Sn.

The basic examples of convergence groups are Möbius groups of the closed unit
ball Bn in Rn. Its discrete subgroups are Kleinian groups.

Notes. — Convergence groups were introduced by F. Gehring and G. Martin
[GehM] for groups acting on a sphere. Their definition was then generalized to
broader settings and systematically studied in particular by P. Tukia [Tuk4] and
B. Bowditch [Bwd2].

3.2 Hausdorff-Gromov limits of metric spaces

Let Z be a compact metric space of diameter D. For any k ≥ 1, let Nk be the
minimum number of balls of radius D/2k needed to cover X.

Let us define inductively A0 = X and Ak+1 = Ak × [1, Nk+1] and let pk :
Ak+1 → Ak denote the canonical projection.

Let us construct inductively a sequence (Bk)k≥0 of covers of Z by balls of
radius D/2k. The initial cover B0 is given by a ball of radius D. If (Bα)α∈Ak
is the cover Bk defined at the next generation, then we cover each ball Bα de
Bk with Nk=1 balls B(xβ , D/2

k+1), β ∈ Ak+1, with pk+1(β) = α. We then let
Bk+1 = {B(xβ , D/2

k+1)}β∈Ak+1
.

We may encode the points of Z as follows. Set

A = lim←− (Ak, pk) =

(αk) ∈
∏
k≥0

Ak, pk(αk+1) = αk

 .

This is a compact space on which we may define an ultra-metric dA by letting

dA((αk), (βk)) = 2−max{j, αj=βj} .

Let us define πZ : A→ Z where we identify a sequence in A by a geodesic ray
(Bαk)αk∈Ak such that (αk) ∈ A. One may check that πZ : A → Z is surjective
and 2D-Lipschitz.

If X and Y are two metric spaces, we write

dHG(X,Y ) = inf dH(f(X), g(Y ))

where the infimum is taken over all isometric embeddings f : X → Z and g : Y →
Z in a common metric space Z. This defines a metric on the set of non-empty
compact metric spaces up to isometry. The set of non-empty compact spaces
which can be encoded by the same space A is compact: each metric space Z can
be isometrically embedded in the space of 1-Lipschitz functions f : Z → R via the
map z0 7→ (z 7→ (|z − z0|)). We thus have an isometric embedding ιZ from Z into
the compact space Lip2D(A) (Arzéla-Ascoli theorem). The convergence of spaces
boils down to the convergence of functions.



16 Peter Häıssinsky

Similarly, if (Xn)n is a sequence of compact metric spaces encoded by a space
A, (Yn)n by B, and if fn : Xn → Yn is a sequence of functions, the convergence of
(fn) boils down to the convergence of ιYn ◦ fn ◦ πXn : A→ Lip2D(B), where D is
an upper bound of the diameters of (Yn).

A sequence of pointed metric spaces (Xn, xn)n tends to (X,x) if the sequence
of pointed closed balls (BXn(xn, R), xn) tends to a pointed metric space (XR, xR)
isometric to a subset of (BX(x,R), x) containing the open ball BX(x,R) for all
R > 0.

A metric space X is N -doubling if any set E of diameter D can be covered by
at most N sets of diameter D/2. In this case, we may define A by considering
Nk = N for all k ≥ 0. M. Gromov proves [Gro2]

Theorem 3.9. Let (Xn, xn) be a sequence of proper N -doubling metric spaces.
There exists a subsequence (nk) and a metric space (X,x) such that (Xnk , xnk)
tends vers (X,x).

This allows us to define the notion of tangent spaces for a proper doubling
metric space Z: it consists of any limit of (Z, zn, RndZ) where (zn) is a sequence
of points of Z and (Rn)n is a positive sequence tending to +∞.

3.3 The conformal elevator principle

For the purpose of this survey, we introduce the following terminology.

Definition 3.10 (large group of quasi-Möbius mappings). A compact metric space
X has a large group of quasi-Möbius maps if there are a constant m > 0 and a
distortion function θ : R+ → R+ such that, for any distinct x, y, z ∈ X, there exists
a θ-quasi-Möbius map f : X → X such that {f(x), f(y), f(z)} is an m-separated
subset of X.

Let us remark that a group of uniform quasi-Möbius mappings which acts co-
compactly on the set of distinct triples is a large group of quasi-Möbius mappings.

Let X be a doubling compact metric space and assume that there exists x ∈ X,
a sequence of θ-quasi-Möbius maps gn : X → X triples of points {xn, yn, zn} tend-
ing to x with the property that d(xn, yn) � d(xn, zn) � d(yn, zn) and (gnxn, gnyn, gnzn)
are m-separated. Then X admits a weak tangent space T and there exist a point
a ∈ X and a quasi-Möbius map h : T → X \ {a}. More generally, the topological
transitivity can be quantified as follows:

Proposition 3.11 (Conformal elevator principle). Let X be a compact metric
space with a large group of quasi-Möbius maps. There exist definite sizes r0 ≥ δ0 >
0 and a distortion function η such that, for any x ∈ X, and any r ∈ (0,diamX/2],
there exists a θ-quasi-Möbius map g : X → X such that g(B(x, r)) ⊃ B(g(x), r0),
diamB(g(x), r0) ≥ 2δ0 and g|B(x,r) is η-quasisymmetric.

This principle is very useful to translate qualitative topological properties of
X into quantitative ones as we will see later on. It is also responsible for the
quasiselfsimilarity of such compact sets.
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Notes.— The relationship of a tangent space and a punctured compact space
appears in [BnK2]. The conformal elevator principle takes its roots in D. Sullivan’s
work on Kleinian groups and rational maps [Sul3]; this formulation is borrowed
from [Häı2, Prop. 4.6].

3.4 Convergence actions versus quasi-Möbius maps

There are very few results that ensure that a convergence group action can be
realized as the action of uniform quasi-Möbius maps.

We provide one general theorem for groups acting on a circle:

Theorem 3.12 (Casson & Jungreis, Gabai [CJ, Gab]). Let G admit a discrete
convergence action on a circle. Then the action of G is conjugate to a Möbius
action on S1.

This result has had important consequences on 3-manifolds; following the work
of G. Mess [Mes], this implies the so-called torus theorem: Let M be a closed, ir-
reducible, orientable 3-manifold. If its fundamental group is infinite and is not
atoroidal, then either it contains an embedded and essential torus, or it admits a
Seifert fibration. This has enabled one to reduce the whole geometrization conjec-
ture of Thurston to the characterization of hyperbolic and spherical manifolds.

The next result applies to particular convergence actions, but on any metrizable
compact metric space.

Theorem 3.13. Let G be a countable group admitting a discrete convergence
action on a metrizable compact space Z. If its diagonal action on the set of distinct
pairs is cocompact, then Z admits a metric compatible with its topology so that G
acts by uniform quasi-Möbius mappings.

A weaker version was established by B. Bowditch [Bwd1]. In a somewhat dif-
ferent form, this was proved by A. Yaman [Yam], and in this form by V. Gerasimov
[Ger1].

In dimension three and above, M. Freedman and R. Skora construct examples
of convergence actions of free groups on spheres Sn, n ≥ 3, which are not conjugate
to any quasi-Möbius action [FS1, FS2]. For these convergence groups, the action
is cocompact on the ordinary set, and the limit set is a wild Cantor set i.e., cannot
be mapped by a global homeomorphism to a Cantor set on a line. For Schottky
groups, all the Cantor sets which arise are always tame (not wild). These groups
are constructed as follows: given n, k ≥ 2, let us consider a collection of 2k pairwise
disjoint balls {Bj , B′j , 1 ≤ j ≤ k} in Sn, and Möbius transformations gj which map
the interior of Bj to the exterior of B′j . The group generated by {gj , 1 ≤ j ≤ k} is
isomorphic to the free group of rank k, and the limit set is a Cantor set. Moving
the balls so that their centers belong to a common circle, we may deduce that these
limits sets are tame. Let us remark that the wildness of the Cantor set is not a
topological obstruction to be the limit set of a convergence group of Möbius maps.
Indeed, S. Matsumoto constructed an example of a free group acting as a conformal
convergence group on the sphere S3 such that the limit set is a wild Cantor set
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and with a cocompact action on its ordinary set [Mtm, Thm 8.1], improving on a
previous work of M. Bestvina and D. Cooper [BC].

Remark 3.14. Let us note that M. Freedman has given an equivalent statement
of the four-dimensional surgery conjecture in terms of convergence actions [Fre]
which has certainly motivated his contributions above: any discrete convergence
group of S3 with a Cantor limit set and a cocompact action on its ordinary set
extends to a convergence action on the four-dimensional ball.

In dimension 2, the situation is supposed to be very different: G. Martin and
R. Skora conjecture the following statement [MnS, Conj. 6.1] —to be compared
with Conjecture 6.23.

Conjecture 3.15 (Martin & Skora). Let G be a convergence action on S2. Then
there exists a discrete subgroup K of PSL2(C) isomorphic to G and a continuous

cellular map ϕ : Ĉ→ S2 such that G ◦ ϕ = ϕ ◦K.

Let us illustrate the necessity to include cellular maps with the following simple
example. Let F be a Fuchsian group and consider its action on the quotient Ĉ/D
of the Riemann sphere by identifying every point of the closed invariant unit disk.
When the action is uniform, then G. Martin and P. Tukia show that the map can be
chosen to be a homeomorphism if it exists [MnT]. Positive cases to this conjecture
are established in [MnT, MnS, Häı3]; see also § 6.5.3.

Compact groups acting on the sphere are well understood for a long time; see
[Ker, Kol] for a proof.

Theorem 3.16 (Kerékjártó). Any compact subgroup of homeomorphisms of S2

is topologically conjugate to a closed subgroup of O(3).

4 Actions on Riemannian manifolds

This section is devoted to actions on Riemannian manifolds. We address four
questions and problems: (a) when is a group of quasi-Möbius mappings conju-
gate to Möbius group? (b) description of manifolds which carry a large group of
conformal diffeomorphisms (the Lichnerowicz conjecture); (c) what can be said of
quasi-Möbius maps on non-compact manifolds? (d) description of the quasicon-
formal homogeneity of manifolds. There are overlaps with [Bou7].

Let (M, g) be a Riemannian manifold of dimension n. Considering the length
distance dg defined by g and its Riemannian volume volg, we obtain a metric
measure space.

Note that when M is compact but not homeomorphic to a sphere, Proposition
3.8 implies that there may only be relatively compact groups of uniform quasi-
Möbius mappings that is, uniform quasisymmetric mappings.

If Γ is a curve family in M , the conformal modulus of Γ is defined by

Mod(Γ) = modnΓ = inf

∫
M

ρndvolg
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where the infimum is taken over all functions ρ : M → [0,+∞] such that

∫
γ

ρ(s)ds ≥

1 for any locally rectifiable curve γ ∈ Γ. The key point is that the conformal mod-
ulus is conformally invariant.

Theorem 4.1. Let M , N be two Riemannian manifolds of dimension n. If f :
M → N is conformal, then Mod(fΓ) = Mod(Γ) for all curve family Γ in M , where
f(Γ) = {f(γ), γ ∈ Γ}.

We end this short introduction by the following version of the Hilbert-Smith
conjecture:

Theorem 4.2 (Martin [Man2]). If a locally compact group G of quasi-Möbius
maps acts faithfully on a Riemannian manifold, then G is a Lie group.

An extension to quasi-Möbius groups acting on some particular metric measure
spaces appears in [Mj].

4.1 Quasi-Möbius groups versus Möbius groups

This section is devoted to the following question asked by F. Gehring and B. Palka
[GehP, p. 197].

Question 4.3. Let n ≥ 1 and G be a group of uniform quasi-Möbius maps acting
on the Euclidean sphere Sn. Is the group G conjugate (by a quasi-Möbius map) to
a group of Möbius transformations?

The situation is very different depending on whether n = 1, 2 or n ≥ 3. In the
one-dimensional setting, this was solved in several steps [Hin1, Hin2, Mak].

Theorem 4.4 (Hinkkanen, Markovic). Any uniformly quasi-Möbius group of
homeomorphisms on the unit circle is quasisymmetrically conjugate to a group
of Möbius transformations.

Dimension 2 was settled by D. Sullivan.

Theorem 4.5 (Sullivan). A group of uniform quasi-Möbius homeomorphisms of
S2 is quasisymmetrically conjugate to a group of Möbius transformations.

Its proof is outlined in [Sul1]. The main idea is to find an invariant measurable
conformal structure under the group and to apply the measurable Riemann map-
ping theorem. A. Hinkkanen wrote a detailed proof following P. Tukia, addressing
also the same question for semigroups of uniformly quasiregular mappings of the
2-sphere. In that case, the answer is not always positive [Hin3].

In higher dimension, the situation is not that definite. We need to introduce
the notion of conical points for convergence groups. Let G be a convergence group
acting on a metrizable metric space. A point x is conical if there are sequences
(xn)n and (gn)n of points in X and elements of G respectively such that (xn)n
tends to x and, for any y ∈ X \{x}, the set of triples (gn(x), gn(y), gn(xn)) remains
in a compact subset of the set of distinct triples. For a group of uniform quasi-
Möbius maps acting on a sphere, the set of conical points has either full or zero
measure.
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Theorem 4.6 (Tukia [Tuk3]). A group of uniform quasi-Möbius homeomorphisms
of Sn, n ≥ 3, is quasisymmetrically conjugate to a group of Möbius transformations
provided the set of conical points has positive measure.

In particular, if the action is cocompact on the set of distinct triples, then every
point is conical and the group is conjugate to a group of Möbius transformations
[Gro1].

As for Sullivan’s theorem, P. Tukia first defines an invariant measurable con-
formal structure. Then the conformal elevator principle allows him to apply a
zooming argument at a conical point where this conformal structure is almost
continuous. This enables him to conjugate the initial group to a group of confor-
mal transformations.

Remark 4.7. Let us mention that examples of uniform quasi-Möbius groups which
are not conjugate to Möbius groups have been constructed in all dimension n ≥ 3
by P. Tukia [Tuk2], with refinements by G. Martin, M. Freedman and R. Skora, and
V. Mayer [Man1, FS1, FS2, May].

4.2 The Lichnerowicz conjecture

A. Lichnerowicz asked the question of which compact Riemannian manifolds have
a compact group of conformal diffeomorphisms. The final answer was brought by
J. Ferrand proving

Theorem 4.8 (Ferrand [Fer1]). Let (M, g) be a compact manifold. If M is not
conformally equivalent to a round sphere, then there is a conformal change of
metric so that the group of conformal diffeomorphisms coincides with the group of
isometries.

There are two main steps in the proof. The first step is to prove that if the
group of conformal diffeomorphisms is compact, then this group reduces to the
group of isometries up to conformal change of the metric. This can be achieved by
averaging the pushforwards of the metric with respect to the Haar measure of the
group. The other step consists in showing that if this group is not compact, then
the manifold is conformally equivalent to the round sphere. For this, J. Ferrand
observes that the group of conformal diffeomorphisms is uniformly quasi-Möbius,
before this notion was even coined, so that she may use its dynamical properties
to prove that it is equivalent to the sphere, cf. Proposition 3.8. This equivalence is
obtained from a 1-quasiconformal map, which is conformal according to Theorem
2.12.

For a historical account on the Lichnerowicz conjecture and its generalizations
to non-compact complete manifolds, see [Fer8].

4.3 Conformally parabolic versus hyperbolic spaces

Let (M, g) be a non-compact complete manifold of dimension n ≥ 2. The con-
formal capacity of a compact subset K is capMK = inf capn(K, {∞}) where the

condenser is considered in the Alexandrov compactification M̂ .
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It can be proved that it is always finite, and either it is zero for all compact
sets, or it is positive for any non-degenerate continuum.

Definition 4.9. Say that a non-compact complete manifold M is conformally
hyperbolic if there exists a compact set K of positive capacity. Otherwise, M is
said to be conformally parabolic.

Theorem 4.10 (Ferrand). If M is conformally hyperbolic, then, for any distor-
tion function θ, θ-quasi-Möbius mappings and θ-F-quasi-Möbius mappings form
equicontinuous families. In particular, there is a conformally equivalent Rieman-
nian metric on M such that the group of conformal diffeomorphisms agrees with
the group of isometries.

The starting point of the proof is the definition of a conformally invariant
metric for conformally hyperbolic manifolds: set

µM (x, y) = inf
E

capME

where the infimum is taken over continua containing {x, y}. This defines a metric
which is invariant by the group of conformal diffeomorphisms. For this metric,
quasiconformal maps become bi-Lipschitz. This implies that θ-quasi-Möbius maps
have no collapsing sequences in M .

Examples of conformally hyperbolic manifolds include simply connected mani-
folds with pinched negative curvature. More generally, if M satisfies some isoperi-
metric inequality stronger than in the Eucldiean space, then M is conformally
hyperbolic; see [Pan2] for details.

Examples of conformally parabolic manifolds include Euclidean spaces. Up
to a conformal change of metrics, this is the only example for which the group
of conformal homeomorphisms is not closed; cf Remark 3.1 for the multi-ended
situation. This solves the extended version of the Lichnerowicz conjecture.

Theorem 4.11 (Ferrand [Fer5]). Let M be a complete non-compact Riemannian
manifold. If M is not conformally equivalent to the Euclidean space, the group of
conformal diffeomorphisms can be reduced to a group of isometries by a conformal
change of metrics.

As for the compact case, the basic idea is to prove the existence of a collapsing
sequence on M̂ , when M is conformally parabolic.

4.4 Homogeneity

The following topic was initiated by F. Gehring and B. Palka [GehP] in the setting
of Euclidean domains. We refer to [BTCT] for more detailed and quantitative
statements and references. The appropriate regularity assumptions on maps for
this topic is quasiconformality. The basic problem is to determine, given a closed
subset E ⊂ M of a manifold M whether the group of quasiconformal mappings
of M preserving E admits a transitive action or not i.e., for any x, y ∈ E, there
exists a quasiconformal homeomorphism f : M → M such that f(E) = E and
f(x) = y.
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Following J. Gong and G. Martin, we focus on the following three notions. Let
M be a Riemannian manifold of dimension d ≥ 2 and E ⊂M be a closed subset;
let QC(M) denote the group of quasiconformal mappings of M and QC(M,E),
those elements which preserve E.

1. The set E is called quasiconformally homogeneous relative to M if QC(M.E)
acts transitively.

2. The set E is called uniformly quasiconformally homogeneous relative to M
if we can choose K-quasiconformal maps from QC(M,E) for each pair of
points in E for some uniform K.

3. The set E is strongly quasiconformally homogeneous relative to M if there is
a locally compact subgroup of QC(M,E) acting transitively on E.

Finally, if we pick E = M , then we only speak of (uniformly or strong) homo-
geneity of M .

We have the following self-improving property based on the compactness of
quasiconformal mappings.

Theorem 4.12. Let E be a quasiconformally homogeneous compact subset of M ,
and assume that M is not homeomorphic to a sphere Sd, d ≥ 3. Then E is
uniformly quasiconformally homogeneous.

This was proved by P. MacManus, R. Näkki and B. Palka for compact subsets
of Ĉ [MNP] and more generally by J. Gong and G. Martin [GonM].

In the Riemann sphere, we have the following classification.

Theorem 4.13 (MacManus, Näkki & Palka [MNP]). Let E be a quasiconformally

homogeneous compact subset of Ĉ. Then E belongs to one of the following cases.

• E = Ĉ;

• E is a finite set of points;

• E is the finite union of quasicircles that constitute the boundary components
of a domain in Ĉ;

• E is a Cantor set of Hausdorff dimension dimH E < 2.

Moreover, J. Gong and G. Martin prove that strongly quasiconformally homo-
geneous compact subsets of the plane are also homogeneous by a uniform quasi-
conformal group. The question in higher dimension remains open [GonM].

Let us remark that if an annulus is quasiconformally homogeneous, it is not
uniformly quasiconformally homogeneous: as points approach the boundary, the
dilatation has to diverge.

Let us note that Theorem 4.2 implies that strongly quasiconformal homoge-
neous compact subsets are homeomorphic to Riemannian manifolds [GonM].

Concerning quasiconformal homogeneity of manifolds (E = M), we note that
there are no obstructions. The situation is much different if we demand uniform
homogeneity. We focus on hyperbolic manifolds.
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Theorem 4.14 (Bonfert-Taylor, Canary, Martin & Taylor [BTCMT]). Let M be a
non simply connected and complete hyperbolic manifold of dimension d ≥ 2. If M
is uniformly quasiconformally homogeneous then M has homotopically nontrivial
curves whose length is controlled explicitly by d and the uniform dilatation K, there
are embedded hyperbolic balls in M whose diameter is bounded below in terms of
d and K, and the limit set of π1(M) is the whole sphere.

Moreover, a hyperbolic manifold of dimension d ≥ 3 is uniformly quasiconfor-
mally homogeneous if and only if it is the regular cover of a compact manifold.

The situation between dimension 2 and higher is different. In dimension 2,
there are examples of uniformly quasiconformally homogeneous Riemann surfaces
which are not regular covers of closed surfaces, nor even deformations of regu-
lar covers [BTCST]. We have the following characterization of regular covers of
compact Riemann surfaces.

Theorem 4.15 (Bonfert-Taylor, Martin, Reid & Taylor [BTMRT]). An orientable
hyperbolic surface is a regular cover of a closed hyperbolic orbifold if and only if
there exists some K such that, for any pairs of points x, y, there exists a K-
quasiconformal map sending x to y which is homotopic to a conformal homeomor-
phism.

Remark 4.16. Examples of homogeneous sets are constructed in [GonM]; see also
the references therein. There are a series of results which consist in bounding from
below the dilatation required to be uniformly homogeneous; see [BTCT].

5 Actions on metric spaces

We consider compact metric spaces which admit a large group of uniform quasi-
Möbius homeomorphisms and study their geometry. In particular, we point out
properties which are preserved by quasi-Möbius mappings. Examples are provided
by subRiemannian manifolds. Loewner spaces form an interesting class of metric
spaces on which quasi-Möbius maps have strong properties. In particular, we
discuss differentiability in the sense of Cheeger and show how to adapt Riemannian
methods to this setting. These will have consequences on hyperbolic geometry.
Combinatorial tools are also defined which are particularly useful in metric spaces.
We first set up our framework by introducing the conformal gauge of a metric
space.

5.1 The conformal gauge of a compact metric space

We let (X, dX) be a compact metric space so that we may identify quasi-Möbius
mappings with quasisymmetric maps. Following J. Heinonen [Hen, Chap. 15], we
define the conformal gauge G(X) of the metric space X as the set of distances d
on X such that the identity mapping Id : (X.dX) → (X, d) is quasi-Möbius (the
name was suggested by D. Sullivan).

Given a metric d ∈ G(X), the operation of snowflaking dmeans that we consider
powers dα, α > 0. As soon as α ∈ (0, 1), we obtain a genuine metric and this metric
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belongs to G(X) as well. Characterizing which metrics appear as such a power is
the object of [TW].

Denote by QM(X) the group of quasi-Möbius maps h : X → X. Note
that QM(X) acts on G(X) by left translation (h, d) 7→ dh defined by dh(x, y) =
d(h−1(x), h−1(y)) for x, y ∈ X. This setting provides some similarities with Te-
ichmüller theory, which have not been systematically exploited yet.

In this paragraph, we are interested in three different kinds of questions:

1. Which properties on X hold for any metric from its gauge?

2. Is there a better metric in the gauge to work with?

3. How to recognize some classical metric spaces up to a quasi-Möbius change
of metric?

For the first problem, besides purely topological properties which are automat-
ically invariant, the following properties define invariants of a conformal gauge,
see [Hen, Chap. 15].

Theorem 5.1. Let X be a compact metric space. The following properties are
quantitative quasisymmetric invariants.

1. The doubling property: there exists a number ND such that any set can be
covered by at most ND sets of half its diameter.

2. Uniform perfectness: the diameter of any ball is comparable to its radius (as
soon as the radius does not exceed the size of X).

3. Uniform disconnectedness: there exists ε0 > 0 such that, for any pair of
points {x, y}, there exists no chain {xj}0≤j≤n with x0 = x, xn = y and
d(xj , xj+1) ≤ ε0.

4. The bounded turning property: there is a constant T > 0 such that any pair
of points {y, z} can be joined by a continuum K such that diamK ≤ Td(y, z).

5. Linear local connectedness: there is a constant λ ≥ 1 such that, for any
x ∈ X, r ∈ (0,diamX), the following two complementary properties hold:

• for every y, z ∈ B(x, r), there is a continuum K ⊂ B(x, λr) containing
{y, z};

• for every y, z /∈ B(x, r), there is a continuum K ∈ X \ B(x.r/λ) con-
taining {y, z}.

6. Annular local connectedness: there is a constant λ ≥ 1 such that, for any
x ∈ X, r ∈ (0,diamX) and y, z ∈ B(x, 2r) \ B(x, r), there a continuum
K ⊂ B(x, λr) disjoint from B(x, r/λ) containing {y, z}.

7. The doubling property of a fixed measure µ on X: there exists a constant
C > 0 such that, for any ball B, µ(2B) ≤ Cµ(B) holds.
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Ahlfors regular conformal gauge.— A metric space X is Ahlfors regular if
there is a Radon measure µ such that for any x ∈ X and r ∈ (0,diamX],
µ(B(x, r)) � rQ holds for some given Q > 0 [Mtl]. The measure µ is equiv-
alent to the Hausdorff measure of X of dimension Q. Alhfors regularity is not
invariant under quasisymmetric mappings; note that these measures are doubling
—a robust property as claimed above. Given a metric space X, S. Semmes shows
that there exists an Ahlfors regular metric in G(X) if and only if X is uniformly
perfect and doubling [Hen, Thm 14.16].

The subset of Ahlfors regular metrics GAR(X) in G(X) defines the Ahlfors
regular conformal gauge of X. It has been described by M. Carrasco Piaggio in
[CP1].

The Ahlfors regular conformal dimension confdimARX of X is defined as the
infimum over GAR(X) of every dimension Q [McT, CP1, Häı2]. This is a numerical
invariant of the conformal gauge of X. It is a refinement due to M. Bourdon and
H. Pajot [BP4] of P. Pansu’s notion of conformal dimension confdimX defined as
the infimum of the Hausdorff dimensions of (X, d) for d ∈ G(X) [Pan4]. The
following properties hold for an Ahlfors regular metric space X:

dimtopX ≤ confdimX ≤ confdimARX ≤ dimH X .

A difficult question is to determine whether these conformal dimensions can be
attained by a metric from the gauge of X. Such a metric space should be the
nicest in the sense that it is the less wrinkled (think of the Euclidean circle and
its snowflakes —in particular the von Koch curve).

We will see later on that these numerical invariants capture very strong prop-
erties of the space and of its gauge. We now relate the existence of families of
curves with positive modulus to conformal dimension.

Theorem 5.2. Let (X, dX) be a Q-regular metric space with Q > 1.

1. If there exists a family of curves Γ with positive Q-modulus modQΓ > 0 then

confdimX = confdimARX = Q .

2. If confdimARX = Q, then X admits a tangent space which carries a family
of positive Q-modulus.

The first part of the theorem is due to J. Tyson [Tys] (see also [Hen, Thm 15.10])
and the converse is due to S. Keith and T. Laakso [KL]; see also [CP1, Cor. 1.5].

Characterizations of classical metric spaces. — We provide several state-
ments which show the importance of the properties described above which guar-
antee the characterization of some low dimension spaces.

The first statement concerns the standard ternary Cantor set [DS, Prop. 15.11].

Theorem 5.3 (David & Semmes). The conformal gauge of a compact metric space
X contains the ternary Cantor set if and only if X is uniformly perfect, uniformly
disconnected and doubling.
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Euclidean circles have been characterized by P. Tukia and J. Väisälä [TV1],
extending the planar characterization [Ahl].

Theorem 5.4 (Tukia & Vaisälä). The conformal gauge of a metric circle contains
the Euclidean circle S1 if and only if it is doubling and satisfies the bounded turning
property.

The case of S2 has been dealt by M. Bonk and B. Kleiner [BnK1].

Theorem 5.5 (Bonk & Kleiner). A metric 2-sphere is quasisymmetrically equiva-
lent to the Euclidean sphere S2 if and only if its conformal gauge is linearly locally
connected and if it contains a 2-Ahlfors regular metric.

For spheres of higher dimension, the general problem remains open. Theo-
rem 5.13 provides a positive answer but requires a large group of quasi-Möbius
mappings.

5.2 Loewner spaces

In the mid-nineties, J. Heinonen and P. Koskela introduced an important class of
metric spaces which enabled to generalize the theory of quasiconformal mappings
in a very satisfactory fashion [HnK2]; see also [Hen, HKST2]. In this sense, finding
a Loewner structure in the gauge of a metric space is a good answer to question
2. above.

Let Q > 1; a metric space X is said to satisfy the Q-Loewner property if there
exists a decreasing function φ such that, for any continua {E,F} ⊂ X,

capQ(E,F ) ≥ φ(∆(E,F ))

where

∆(E,F ) =
dist(E,F )

min{diamE.diamF}

denotes the relative distance between E and F .
Loewner spaces contain a lot of rectifiable curves and behave, in many respect,

as Riemannian manifolds with non-negative Ricci curvature. It follows from The-
orem 5.2 that Q = confdimX if X is also Q-regular.

Remark 5.6. The relative distance is well-behaved under quasi-Möbius mappings:
given a distortion function θ, there is an increasing homeomorphism θ̂ : R+ → R+

such that, for any θ-quasi-Möbius map h : X → Y ,

∆(h(E), h(F )) ≤ θ̂(∆(E,F ))

holds for any condenser (E,F ) in X.

Let us note that when the space is also Q-regular, then one obtains very inter-
esting bounds on capacities:
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Proposition 5.7. If X is a Q-regular metric space, then there is a decreasing
homeomorphism ψ : R+ → R+ such that

capQ(E,F ) ≤ ψ(∆(E,F ))

holds for any condensor.

In this setting, we may work with J. Ferrand’s crossratio which behaves as the
metric crossratio. These capacity estimates enable us to adapt Theorem 2.10 and
Theorem 2.11 [HnK2, HKST1, BKR, BP2].

Theorem 5.8. Let X be a Q-Loewner and Q-Ahlfors regular compact metric
space, Y a linearly connected and Q-Ahlfors regular metric compact space and
f : X → Y be a homeomorphism. The following proposition are equivalent:

1. f is a quasi-Möbius map;

2. f is an F-quasi-Möbius map;

3. f is quasiconformal;

4. f preserves the Q-moduli of curves up to a fixed factor.

Moreover, if these conditions are satisfied, then f is absolutely continuous and
absolutely continuous on Q-almost every curve. The space Y is also Q-Loewner.

In metric spaces, we define a quasiconformal map as a homeomorphism f :
X → Y for which there is a constant H such that, for any x ∈ X,

Hf (x) = lim sup
r→0

Hf (x, r) ≤ H

where 

Hf (x, r) =
Lf (x, r)

`f (x, r)
,

Lf (x, r) = sup{dY (f(x), f(z)), dX(x, z) ≤ r},

`f (x, r) = inf{dY (f(x), f(z)), dX(x, z) ≥ r} .

In particular, the above theorem shows that this local condition implies a global
control. Other characterizations can be found in [BKR].

General Problem. — Given a metric space, determine whether its gauge con-
tains a Q-regular and Q-Loewner metric.

For metric surfaces, a Q-Loewner Q-Ahlfors structure can only hold for Q = 2,
see [BnK1] for spheres and more generally [HP, Cor. 3.14].
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5.3 Geometric properties of metric spaces

The conformal elevator principle provides us with the following properties [BnK2,
BnK4] which quantify the topological properties.

Theorem 5.9 (Bonk & Kleiner). Let Z be compact connected metric space with
a large group of quasi-Möbius mappings in the sense of Def. 3.10.

1. The space Z is doubling.

2. Any tangent space is quasi-Möbius equivalent to the complement in Z of a
point.

3. The space Z is linearly locally connected.

In particular GAR(X) 6= ∅. Together with Theorem 5.2 (and extra work!), this
leads to

Corollary 5.10 (Bonk & Kleiner [BnK3]). Let Z be compact connected metric
space with a large group of quasi-Möbius mappings in the sense of Def. 3.10. If
confdimARX (> 1) is attained in GAR(X), then there is a Loewner metric in the
gauge.

The main steps of its proof go roughly as follows. The assumption of the
corollary, Theorem 5.2 and the selfsimilarity of the space shows that Z carries
a family of curves of positive Q-modulus. Then the dynamics of the group and
the quasi-invariance of moduli enable the authors to spread this family of curves
everywhere and in every direction so that the Loewner condition follows.

Determining whether a compact metric space admits a Loewner metric in its
gauge is a subtle issue. In particular, there is no known sufficient topological
assumption on the compact space which ensures its existence. We record the
following:

Theorem 5.11 (Bourdon & Pajot [Bou3, BP1, BP4]). Let X be the Menger
sponge.

1. There exist countably many different conformal gauges on X which admit a
large group of quasi-Möbius maps and a Loewner metric.

2. There exist conformal gauges on X which admit a large group of quasi-
Möbius maps but no Loewner metric.

These examples correspond to boundaries of word hyperbolic groups, cf. § 6.
The first family of examples also appear as the boundary of Fuchsian buildings.

One question is to determine which connected compact sets have conformal di-
mension 1. The following criteria were obtained by J. Mackay [Mac] and M. Carrasco
Piaggio [CP2].

Theorem 5.12. Let Z be a compact metric space with a large group of quasi-
Möbius mappings.
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1. If Z has no local cut points, then confdimZ > 1.

2. If there is a sequence (δn)n tending to zero and a sequence of finite sets
Pn ⊂ Z such that, for any component Y of Z \ Pn, diamY ≤ δn, then
confdimARZ = 1.

There remains a gap between these two statements: if there is a dense collection
of local cut points but which do not satisfies the condition 2., then it is still
unknown whether the conformal dimension can be one or not.

We mention a characterization of Euclidean spheres Sn which assumes a large
group of quasi-Möbius maps.

Theorem 5.13 (Bonk & Kleiner [BnK2]). A compact metric space Z is quasi-
Möbius equivalent to a Euclidean sphere Sn, n ≥ 1, if and only if the following
three conditions hold:

1. the space Z admits a large group G of uniformly quasi-Möbius maps;

2. there is a metric minimizing confdimAR(Z);

3. the identity confdimARX = dimtopX holds.

Moreover, G is conjugate to a group of Möbius transformations.

Let us remark that the conclusion includes the fact that Z is homeomorphic to
a sphere. The main idea of the proof is to establish that Z admits a tangent bi-
Lipschitz equivalent to some Rn. This implies that Z is quasi-Möbius equivalent to
Sn. Theorem 4.6 shows that G is conjugate to a group of Möbius mappings. Find-
ing the proper tangent space is the most delicate issue: the dimension assumption
provides us with a Lipschitz map f : Z → Sn, for n = dimtop Z, such that the
image of f has positive Lebesgue measure. Two consecutive zooming arguments
enable us to first obtain a Lipschitz map of bounded multiplicity between their
respective tangent spaces, and then a new tangent space bi-Lipschitz to Rn; a
purely topological argument implies that a Lipschitz map of bounded multiplicity
onto Rn is locally bi-Lipschitz somewhere.

We close this section with a somewhat surprising example [KK, § 7].

Theorem 5.14 (Kapovich & Kleiner). There exist compact sets with the following
properties.

• The group of homeomorphisms is a discrete uniform convergence group.

• There exists a unique (Ahlfors-regular) conformal gauge which admits a large
group of quasi-Möbius maps. For this gauge, the group of homeomorphisms
is uniformly quasi-Möbius.

The construction is quite involved. These are two-dimensional compact spaces
made of infinitely many 2-spheres glued along circles following an intricate pattern.
Such examples cannot exist in smaller dimension.
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5.4 Combinatorial moduli and the combinatorial Loewner
property

In the realm of (quasi)conformal geometry, discretization methods have proved to
be very powerful. The basic idea is to approximate a metric space by a collection
of balls since conformal maps have the property of respecting their geometry.
Such tools play an important role in proving properties of quasi-Möbius mappings,
especially in Ahlfors regular Loewner spaces, cf. [Pan4, HnK1, Can2, Tys, BnK1,
BdK1] among others.

Let S be a covering of a topological space X, and let p ≥ 1. Denote byMp(S)
the set of functions ρ : S → R+ such that 0 <

∑
ρ(s)p < ∞; elements of Mp(S)

we call admissible metrics. For K ⊂ X we denote by S(K) the set of elements of
S which intersect K. The ρ-length of K is by definition

`ρ(K) =
∑

s∈S(K)

ρ(s) .

Define the ρ-volume by

Vp(ρ) =
∑
s∈S

ρ(s)p .

If Γ is a family of curves in X and if ρ ∈Mp(S), we define

Lρ(Γ,S) = inf
γ∈Γ

`ρ(γ),

modp(Γ, ρ,S) =
Vp(ρ)

Lρ(Γ,S)p
,

and the combinatorial modulus by

modp(Γ,S) = inf
ρ∈Mp(S)

modp(Γ, ρ,S).

Note that if S is a finite cover, then the modulus of a nonempty family of
curves is always finite and positive.

Under suitable conditions, the combinatorial moduli obtained from a sequence
(Sn)n≥1 of coverings can be used to approximate analytic moduli. One such condi-
tion requires the sequence to be a uniform family of quasipackings; compare with
[Bou7] for an equivalent point of view.

Definition 5.15 (Quasipacking). A quasipacking of a metric space is a locally
finite cover S such that there is some constant K ≥ 1 which satisfies the following
property. For any s ∈ S, there are two balls B(xs, rs) ⊂ s ⊂ B(xs,K ·rs) such that
the family {B(xs, rs)}s∈S consists of pairwise disjoint balls. A sequence (Sn)n≥1

of quasipackings is called uniform if the mesh of Sn tends to zero as n→∞ and
the constant K defined above can be chosen independent of n.

For compact Ahlfors regular spaces, uniform sequences of finite quasipackings
always exist, and are preserved under quasisymmetric maps, quantitatively. It is
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sometimes convenient to start from a uniform sequence of quasipackings (Sn)n
such that, at each level n, diam s � δn holds for some δ ∈ (0, 1) and any s ∈ Sn.
In that case, we call (Sn)n an approximation of X. Note that this notion appeared
implicitely in § 3.2 when defining the Hausdorff-Gromov convergence.

The next result says that under appropriate hypotheses, analytic and combi-
natorial moduli are comparable [Häı1, Prop. B.2 ].

Proposition 5.16. Suppose Q > 1, X is an Ahlfors Q-regular compact metric
space, and (Sn)n≥1 is a sequence of uniform quasipackings. Let Γ be a nondegen-
erate closed family of curves in X. Then either

1. modQΓ = 0 and limn→∞modQ(Γ,Sn) = 0, or

2. modQΓ > 0, and there exist constants C ≥ 1 and N ∈ N such that for any
n > N ,

1

C
modQ(Γ,Sn) ≤ modQΓ ≤ CmodQ(Γ,Sn).

We deduce the following general criteria on the Ahlfors-regular conformal di-
mension.

Corollary 5.17. Let X be a Q-Ahlfors-regular compact metric space, and (Sn)n≥1

a sequence of uniform quasipackings. If Q > dimARX, then

lim
n→∞

modQ(Γ,Sn) = 0

for any family of curves the diameter of which have a positive lower bound.

The following is based on the length-area method [Pan4].

Proposition 5.18 (Pansu). Let X be a Q-Ahlfors-regular metric space, and
(Sn)n≥1 is a sequence of uniform quasipackings. Assume there exists a family
of curves Γ the diameter of which has a positive lower bound and a probability
measure µ on Γ such that µ(Γ(s)) . (diams)Q−1 for all s, where Γ(s) denotes the
subfamily of curves of Γ which go through s. Then confdimARX = Q.

Assuming that X has a large group of quasi-Möbius maps with a linear distor-
tion function, we have the following characterization, which has the advantage of
not starting from a candidate metric:

Theorem 5.19 (Keith & Kleiner, Carrasco Piaggio [CP1]). Let X be an Ahlfors-
regular connected metric space, and (Sn)n≥1 an approximation of X. Assume
that X admits a large group of quasi-Möbius maps controlled by a uniform linear
distortion function. Then there exists δ > 0 such

confdimARX = inf {Q ≥ 1, lim modQ(Γδ,Sn) = 0}

where Γδ denotes the family of curves of diameter at least δ.

The linear distortion assumption ensures that the quasi-Möbius maps are all
bi-Lipschitz (with no uniform bound).
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Remark 5.20. Combinatorial moduli are used to prove that quasi-Möbius maps
preserve Q-modulus in Q-Ahlfors regular metric spaces, and for the proofs of The-
orem 5.5 and Theorem 5.12 2. among others.

The combinatorial Loewner property. — This notion was introduced by
B. Kleiner to capture combinatorially the properties of Q-Loewner and Q-Ahlfors
regular metric spaces [Klr]; see [BdK1] for a systematic study of this notion. Let
Q > 1 and (Sn) be an approximation of X; a metric space X is said to satisfy
the combinatorial Q-Loewner property if there exist decreasing functions φ, ψ such
that, for any continua {E,F} ⊂ X, there exists n0 such that, if n ≥ n0, then

φ(∆(E,F )) ≤ capQ(E,F,Sn) ≤ ψ(∆(E,F ))

where we recall that

∆(E,F ) =
dist(E,F )

min{diamE.diamF}

denotes the relative distance between E and F .

The following theorem justifies its interest.

Theorem 5.21 (Bourdon & Kleiner [Klr, BdK1]). We have the following proper-
ties.

1. A Q-Loewner Q-regular metric space with Q > 1 satisfies the combinatorial
Q-Loewner property.

2. The combinatorial Loewner property is invariant under quasi-Möbius map-
pings.

The converse is the main issue for this notion but remains an open question:

Conjecture 5.22 (Kleiner [Klr]). An Ahlfors regular metric space which satisfies
the combinatorial Q-Loewner property contains a Q-Loewner Q-regular metric in
its conformal gauge.

Examples of spaces which satisfy the combinatorial Loewner property include
the standard Sierpiński carpet and Menger sponge, as well as some boundaries of
word hyperbolic Coxeter groups [BdK1]. Other examples have been studied by
A. Clais [Cli].

As a concluding remark, let us mention that moduli of curves play a central
role in the understanding of quasiconformal geometry. Unfortunately, Theorem
5.2 tells us that they can only be used when the dimension of the space is minimal
within its gauge. On the contrary, combinatorial moduli can be considered in any
metric space. Since uniform packings behave well under quasi-Möbius maps, it
can be hoped that the combinatorial Loewner property can be established more
easily: it does not depend on the metric we are starting with. Thus, a positive
answer to the conjecture should help recognizing conformal gauges which contain
Loewner structures.
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5.5 SubRiemannian manifolds

Let M be a compact manifold and let H ⊂ TM be a subbundle. For each local
frame (X1, . . . , Xh) of H at x ∈ M and i ≥ 1, let Hi

x denote the subspace of
TxM spanned by X1, . . . , Xh together with all commutators of these vector fields
of order at most i. The subbundle H is called equiregular if for all x ∈M , dimHi

x

is independent of x, and horizontal if Hn = TM for some n.
We call the pair (M ;H) a Carnot-Carathéodory space of depth n (abbreviated

“cc space”) if H is equiregular and horizontal, and n = inf{k;Hk
x = TxM}. To

each subspace Hx, we consider an inner product gx which depends continuously
on x. The triple (M,H, g) gives rise to a subRiemannian manifold.

A piecewise smooth curve γ : [0, 1] → M is horizontal if γ′ is contained in H
almost everywhere. We may then define the Carnot-Carathéodory metric dcc on
M as

dcc(x, y) = inf `(γ)

where the infimum is taken over all horizontal curves joining x and y. According
to Chow, this defines a metric on M . If instead of an inner metric, we just consider
a continuous collections of norms, then one obtains a subFinsler structure.

Let (M,H, g) be an equiregular Carnot-Carathéodory space of depth n. Then
it is Q-Ahlfors regular [Mit] for

Q =

n∑
k=1

k(dimHk − dimHk−1) .

These provide examples of Loewner spaces [HnK2].

5.5.1 Carnot groups

A Carnot group G is a simply connected nilpotent Lie group, together with a
derivation α of its Lie algebra g such that the subspace V1 with eigenvalue 1 is
horizontal (and equiregular) and is endowed with an inner product. The deriva-
tion gives rise to a one-parameter dilation group on the Lie group [Pan5]. More
precisely, the Lie algebra g splits into

g = V1 ⊕ V2 ⊕ . . .⊕ Vs

where Vj+1 = [V1, Vj ] for j = 1, . . . , s−1 and [V1, Vs] = {0}; the grading introduced
for subRiemannian manifolds corresponds to Hk = V1 ⊕ · · · ⊕ Vk. The dilations
on G come from eαt(v) = tjv for v ∈ Vj via the exponential map (which is a
diffeomorphism). Examples are provided in § 5.5.3. Carnot groups are the simplest
examples of Carnot-Carathéodory manifolds and serve as infinitesimal models for
them:

Theorem 5.23 (Mitchell [Mit]). Weak tangent spaces of equiregular Carnot-
Carathéodory spaces are Carnot groups.

We close this section with the following characterization of Carnot groups based
on the solution to the fifth Hilbert problem:
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Theorem 5.24 (Le Donne [LD]). The subFinsler Carnot groups are the only
metric spaces (X, d) that are:

1. locally compact and geodesic;

2. isometrically homogeneous: for any p, q ∈ X, there is a distance-preserving
homeomorphism of X mapping p to q;

3. self-similar: there exists λ > 1 and a homeomorphism f of X such that
d(f(p), f(q)) = λd(p, q) for all p, q ∈ X.

5.5.2 Differentiability

The theory of quasi-Möbius mappings and quasiconformal maps acting on sub-
Riemannian manifolds is well developed, and has been a source of inspiration for
the notion of Loewner spaces, see for instance [Pan5, Rei, MM]. In particular, one
can give sense to the differential of a quasi-Möbius map between Carnot groups:
Let δt be the one parameter group of dilations at the origin 0 ∈ G, and δ′t for
0 ∈ G′. Following P. Pansu, a map f : G → G′ is differentiable at the origin if
limt→0(δ′t)

−1◦f ◦δt is convergent towards a group homomorphism which commutes
with the derivations. In the setting of cc-manifolds, one considers quasi-Möbius
maps f : M →M ′ and say that f is differentiable at x if

lim
t→∞

{
(M, tdcc)

f−→ (M ′, tdcc)
}

is convergent to a group homomorphism between their respective tangent Carnot
groups.

Theorem 5.25. A quasi-Möbius map between cc-spaces is differentiable almost
everywhere and the differential is a group automorphism which is compatible with
the derivation. Moreover, 1-quasiconformal maps on Carnot groups are composi-
tions of dilations and isometries.

The theorem was proved by P. Pansu in the setting of Carnot groups [Pan5]
and by G. Margulis and G. Mostow in the general setting [MM].

5.5.3 Heisenberg groups

Let K denote either the field of complex or quaternionic numbers, or the division
algebra of Cayley numbers. Fix n ≥ 2 (and n = 2 in the case of the Cayley
algebra) and let us consider the simply connected Lie group GnK = Kn−1 × =mK
with multiplication

(z, t) · (w, s) = (z + w, t+ s+ =m〈z, w〉) .

The Lie algebra splits as follows: g = Hn ⊕ V where Hn = Kn−1 and V = =mK.
We endow this with the derivation given in the above decomposition by(

1 0
0 2

)
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so that GnK becomes a Carnot group of depth 2 and with horizontal space Hn.

The following theorem extends Theorem 4.6 (with a similar proof):

Theorem 5.26 (Chow [Cho]). A countable group of uniform quasi-Möbius homeo-
morphisms of the Alexandrov compactification of GnC, n ≥ 2, is quasisymmetrically
conjugate to a group of conformal transformations provided the set of conical points
has positive measure.

The other situation is rigid so that any group of quasi-Möbius maps is auto-
matically a group of conformal transformations:

Theorem 5.27 (Pansu [Pan5]). A quasi-Möbius map on the Alexandrov compact-
ification of GnK is the composition of an inversion, a dilation and an isometry when
K is the field of quaternionic numbers or the division algebra of Cayley numbers.

P. Pansu proves that, in this setting, the group of automorphisms which pre-
serves the Carnot structure only contains similarities. Since quasi-Möbius are
differentiable almost everywhere, it follows that a quasi-Möbius map is always
1-quasiconformal, hence conformal according to Theorem 5.25.

We will see applications of these results to the classification of hyperbolic man-
ifolds of negative curvature.

5.6 Cheeger differentiability

We introduce the notion of differentability in the sense of Cheeger [Che]; see also
[Kei, KrM, Bat, CKS] and [HKST2] for a general account. The existence of a
measurable differentiable structure is known to hold for complete Ahlfors regular
Loewner spaces This notion will enable us to generalize differential calculus to
metric spaces and adapt previous results on Riemannian manifolds to Loewner
spaces. Moreover we will see that quasi-Möbius mappings become differentiable
almost everywhere, see below.

By a metric measure space (X, d, µ), we will mean a metric space (X, d) en-
dowed with a Borel regular measure µ which gives positive and finite mass to any
non-empty open ball.

Definition 5.28 (measurable differentiable structure). A measurable differen-
tiable structure on a metric measure space (X, d, µ) is a countable collection of
pairs {(Xα,xα)} called coordinate patches, that satisfy the following conditions.

1. Each Xα is a measurable subset of X with positive measure, and the union
∪αXα has full measure in X.

2. For each α, there is some N(α) ∈ N such that xα : X → RN(α) is Lipschitz
and, for any λ ∈ Hom(RN(α),R), λ ◦ xα ≡ 0 if and only if λ = 0. The
dimensions N(α) are bounded independently of α and their maximum is
called the dimension of the differentiable structure.
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3. For each α, xα = (x1
α, . . . , x

N(α)
α ) spans the differentials almost everywhere

for Xα in the following sense: for every Lipschitz function f : X → R, there
exists a measurable function dfα : Xα → RN(α) so that for µ-a.e. x ∈ Xα

lim sup
y→x

|f(y)− f(x)− dfα(x)(xα(y)− xα(x))|
d(x, y)

= 0 .

Moreover, dfα is unique up to sets of measure zero.

A differentiabillity space is a metric measure space endowed with a measurable
differentiable structure.

It follows from the theory that, for each α and µ-a.e. x ∈ Xα, Hom(RN(α),R)
can be supplied with a norm defined for any linear form λ by

|λ|x = lim sup
y→x

|λ ◦ xα(y)− λ ◦ xα(x)|
d(x, y)

.

In particular, if f is a Lipschitz function, then, for almost every x ∈ Xα,

|dfα(x)|x = Lipf(x) = lim sup
r→0

sup
d(x,y)≤r

|f(x)− f(y)|
d(x, y)

.

This Banach space T ∗xX = (RN(α), | · |x) defines the cotangent space at x, and they
combine to give a vector bundle T ∗X which is called the generalized cotangent
bundle of X. By using local sections dαf on Xα, one can define a derivation
operator d on the algebra of locally Lipschitz functions on X which takes values in
the bundle Γ(T ∗X) of sections in T ∗X. A tangent bundle TX can then be defined
by duality.

Theorem 5.29 (Heinonen, Koskela, Shanmugalingam & Tyson [HKST1, Thm. 10.8]).
Let (X, dX , µ) and (Y, dY , ν) be two Q-Loewner Q-Ahlfors regular spaces for some
Q > 1 endowed with measurable differentiable structures and let h : X → Y be a
quasi-Möbius mapping. Then there is a natural induced map h∗ : T ∗Y → T ∗X
such that

h∗(df) = d(f ◦ h)

for all Lipschitz functions f : Y → R.

Let us remark that quasi-Möbius mappings being invertible the dimensions of
the cotangent bundle have to preserved by the group.

5.7 The group of conformal maps

Let (X, dX , µ) and (Y, dY , ν) be two Q-Loewner Q-Ahlfors regular spaces for some
Q > 1, and suppose we are given measurable Riemannian structures 〈·, ·〉X and
〈·, ·〉Y on T ∗X and T ∗Y respectively that are uniformly equivalent to the norms.
Such structures exist since the cotangent bundles have finite dimension and we may
consider the structure defined by the ellipsoid of largest volume contained in the
unit ball of each cotangent space. Following B. Kleiner [Klr], a homeomorphism
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h : X → Y is conformal with respect to these structures if it is quasiconformal and
its derivative dxh : T ∗h(x)Y → T ∗xX is conformal for almost every x ∈ X. In this

case, it follows that the metric infinitesimal distortion Hh of h satisfies Hh(x) = 1
almost everywhere and that moduli of curves are preserved [BP2].

The conformal group of (X, 〈·, ·〉X), denoted Conf(X, 〈·, ·〉X) is the group of
conformal homeomorphisms.

If the dynamics of Conf(X, 〈·, ·〉X) is sufficiently rich, then there is a unique
action up to conformality. This extends Mostow’s rigidity theorem.

Theorem 5.30 (Kleiner [Klr, Thm 5.6]). Let X,X ′ be Q-Loewner Q-regular
metric spaces for some Q > 1 and assume that ρ : G → Conf(X, 〈·, ·〉) and
ρ′ : G → Conf(X ′, 〈·, ·〉′) are two representations such that their respective ac-
tions are uniform convergence actions. Then ρ and ρ′ are conformally equivalent.

Let us note that the assumptions of this theorem hold when the cotangent
bundle is one-dimensional (this happens for boundaries of Fuchsian buildings, cf.
[BP2, Xie1]). In that case, quasi-Möbius maps are automatically conformal, so
one obtains with Theorem 5.8 the following self-improving property.

Theorem 5.31 (Kleiner, cf. [Xie1, Thm.4.6]). Let X be a Q-Loewner Q-regular
compact metric space for some Q > 1 and assume that T ∗X is one-dimensional.
Then quasi-Möbius maps are uniformly quasi-Möbius.

A part of the proof of Theorem 4.6 adapts to give:

Theorem 5.32. Let G be a group of uniformly quasi-Möbius mappings on a Q-
Loewner Q-regular metric space (X, 〈·, ·, 〉X). Then T ∗X carries a measurable
conformal structure invariant under G.

6 Quasi-Möbius maps and hyperbolicity

Background on hyperbolic metric spaces include [Gro3, CDP, GdlH, KB]. After
recalling the basic definitions and properties of hyperbolic spaces in the sense of
M. Gromov, we relate their geometric properties to the quasiconformal geometry
of their boundaries at infinity. We then use this correspondence to exhibit rigidity
phenomena of hyperbolic manifolds, see also [Bou7].

Let X be a metric space. It is geodesic if any pair of points {x, y} can be
joined by a (geodesic) segment i.e, a map γ : [0, d(x, y)]→ X such that γ(0) = x,
γ(d(x, y)) = y and d(γ(s), γ(t)) = |t− s| for all s, t ∈ [0, d(x, y)]. The metric space
X is proper if closed balls of finite radius are compact.

A triangle ∆ in a metric space X is given by three points {x, y, z} and three
segments joining them two by two. Given a constant δ ≥ 0, the triangle ∆ is δ-thin
if any side of the triangle is contained in the δ-neighborhood of the two others.

Definition 6.1 (Hyperbolic spaces and groups). A geodesic metric space is hy-
perbolic if there exists δ ≥ 0 such that every triangle is δ-thin. A group G is word
hyperbolic if it acts geometrically on a proper, geodesic hyperbolic metric space.



38 Peter Häıssinsky

Basic examples of hyperbolic spaces are the simply connected Riemannian
manifolds Hn of sectional curvature (−1) and R-trees. In particular fundamenal
groups of closed hyperbolic manifolds are word hyperbolic.

A quasi-isometry between metric spaces X and Y is a map ϕ : X → Y such
that there are constants λ ≥ 1 and c > 0 such that:

• (quasi-isometric embedding) for all x, x′ ∈ X, the two inequalities

1

λ
dX(x, x′)− c ≤ dY (ϕ(x), ϕ(x′)) ≤ λdX(x, y) + c

hold and

• the c-neighborhood of the image f(X) covers Y .

This defines in fact an equivalence relation on metric spaces. Note that any two
locally finite Cayley graphs of the same group are quasi-isometric: this enables us
to discuss the quasi-isometry class of a finitely generated group (through the class
of its locally finite Cayley graphs). More generally, Švarc-Milnor’s lemma asserts
that there is only one geometric action of a group on a proper geodesic metric
space up to quasi-isometry [GdlH, Prop. 3.19].

Let η, η′ : (R+, 0) → (R+, 0) be two homeomorphisms. We say that a map
f : X → Y is (η, η′)-biuniform if

η(|x− x′|) ≤ |f(x)− f(x′)| ≤ η′(|x− x′|)

holds for all x, x′ ∈ X.

Lemma 6.2 (Tukia). Let f : X → Y be (η, η′)-bi-uniform and suppose that X and
f(X) are geodesic spaces. Given c > 0, f is (λ, c)-quasi-isometric for λ depending
only on c, η and η′.

6.1 Basic properties

We briefly review some properties of hyperbolic geodesic spaces.

Approximation by trees.— Let k ≥ 1 and Z be the union of k segments or
rays with vertex w. There is a (1, c)-quasi-isometry of Z into a tree T where c
only depends on δ and k.

Shadowing lemma.— A quasigeodesic is the image of an interval by a quasi-
isometric embedding. The shadowing lemma asserts that, given δ, λ and c, there
is a constant H = H(δ, λ, c) such that, for any (λ, c)-quasigeodesic q in a proper
geodesic δ-hyperbolic metric space X, there is a geodesic γ at Hausdorff distance
at most H.

It follows from the shadowing lemma that, among geodesic metric spaces, hy-
perbolicity is invariant under quasi-isometry : if X, Y are two quasi-isometric
geodesic metric spaces, then X is hyperbolic if and only if Y is hyperbolic.
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Compactification.— A proper geodesic hyperbolic space X admits a canoni-
cal compactification X t ∂X at infinity in a similar spirit as the visual boundary
introduced by P. Eberlein and B. O’Neill for visibility manifolds [EO]. This com-
pactification can be defined by looking at the set of rays i.e., isometric embeddings
r : R+ → X, up to bounded Hausdorff distance. The topology is induced by the
uniform convergence on compact subsets of R+. The boundary can be endowed
with a family of visual distances dv compatible with its topology i.e., which satisfy

dv(a, b) � e−εd(w,(a,b))

where w ∈ X is any choice of a base point, ε > 0 is a visual parameter and (a, b) is
any geodesic asymptotic to rays defining a and b. Visual distances are known to
exist for visual parameters ε > 0 chosen small enough with respect to δ. When X
is the hyperbolic space Hn, n ≥ 1, then ∂Hn may be endowed with a visual metric
so that it is isometric to the Euclidean sphere Sn−1.

If Φ : X → Y is a quasi-isometry between two geodesic hyperbolic spaces, then
the shadowing lemma implies that Φ induces a homeomorphism φ : ∂X → ∂Y .
This means that a word hyperbolic group G admits a topological boundary ∂G
defined by considering the boundary of any proper geodesic metric space on which
G acts geometrically.

In the case of the fundamental group of a closed hyperbolic manifold of dimen-
sion, the boundary is homeomorphic to the (n− 1)-dimensional sphere.

6.2 Analytic aspects

A general principle asserts that a geodesic hyperbolic group is determined by its
boundary. More precisely, F. Paulin proved that the quasi-isometry class of a word
hyperbolic group is determined by its boundary equipped with its quasiconformal
structure [Pau]. This was later generalized by M. Bonk and O. Schramm to a
broader context [BSm].

Quasi-isometries provide natural examples of quasi-Möbius maps:

Theorem 6.3. A (λ, c)-quasi-isometry between proper, geodesic, metric spaces
extends as a θ-quasi-Möbius map between their boundaries, where θ only depends
on λ, c, the hyperbolicity constants and the visual parameters.

This result takes its roots in the work of V.A. Efremovich and E.S. Tihomirova
[ET]; see also [Mar] where quasi-isometries are explicitly defined and where The-
orem 6.3 is proved for real hyperbolic spaces.

A pointed geodesic metric space (X,w) is quasi-starlike if there is some constant
K such that any point x ∈ X lies at distance at most K of a ray emanating from
w. M. Bonk and O. Schramm’s result reads

Theorem 6.4 (Bonk & Schramm [BSm]). Two proper quasi-starlike geodesic hy-
perbolic metric spaces are quasi-isometric if and only if there is a quasi-Möbius
homeomorphism between their boundaries.

As a byproduct, one obtains:
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Theorem 6.5 (Paulin [Pau]). Two non-elementary word hyperbolic groups are
quasi-isometric if and only if there is a quasi-Möbius homeomorphism between
their boundaries.

The latter enables us to define the (Ahlfors-regular) conformal gauge G(AR)(G)
of a word hyperbolic group G: it corresponds to the conformal gauge of its bound-
ary supplied with any visual distance.

6.3 Groups of isometries versus quasi-Möbius actions

Theorem 6.3 has the following consequences.

Corollary 6.6. Let G be a group of isometries acting on a proper geodesic hy-
perbolic space X. Let us endow ∂X with a visual distance. Then the action of G
extends to a uniformly quasi-Möbius convergence action of ∂X. If the action of G
on X is properly discontinuous, then its action on ∂X is a discrete action.

Let G be a collection of (λ, c)-quasi-isometries on a proper geodesic hyperbolic
metric space. We say that G is an approximate group if the following two properties
hold:

• for any f, g ∈ G, there exist h ∈ G and M such that

d((g ◦ f)(x), h(x)) ≤M

holds for all x ∈ X;

• for any f ∈ G, there exist h ∈ G and M such that

d((h ◦ f)(x), x) ≤M and d((f ◦ h)(x), x) ≤M

hold for all x ∈ X.

Corollary 6.7. An approximate group G of (λ, c)-quasi-isometries of a proper
geodesic hyperbolic space X extends to a uniformly quasi-Möbius convergence ac-
tion of ∂X whenever ∂X is endowed with a visual distance.

If X is quasi-starlike, then Theorem 6.4 implies the converse:

Theorem 6.8. Let X be a hyperbolic, proper, geodesic and quasi-starlike metric
space. Let us endow ∂X with a visual distance. If G is a group of uniform quasi-
Möbius maps, then it extends as an approximate group of uniform quasi-isometries.

One can prove that two quasi-isometries which share the same boundary values
have bounded uniform distance. Thus, one usually considers the group of quasi-
isometries up to bounded distance. Therefore, the previous results estabishes a
correspondence between quasi-Möbius maps on the boundary and quasi-isometry
classes.

We close this section with a stronger version of Theorem 3.13 —corresponding
to the actual theorem, which provides a partial answer to the following question:
when is a convergence group a subgroup of isometries of a hyperbolic metric space?
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Theorem 6.9 (Bowditch, Yaman, Gerasimov). Let G be a countable group ad-
mitting a discrete convergence action on a metrizable compact space Z. If its
diagonal action on the set of distinct pairs is compact, then G acts properly dis-
continuously on a proper geodesic hyperbolic metric space X by isometries and
there is an equivariant homeomorphism h : ∂X → Z.

The general case is still open. There are essentially two different approaches
for this theorem: first building a quasiconformal structure on Z and then show
that it is the boundary of a hyperbolic space, or defining an unbounded metric
space with a compactification homeomorphic to Z and use this space to define a
metric structure on Z; see also the next section for similar ideas.

B. Bowditch’s approach is to define a notion of crossratio invariant by the group,
and to use this notion to define a metric structure on the set of triples. Showing
that this structure is hyperbolic is the concluding step. The other approach, used
by V. Gerasimov and L. Potyagailo, consists in constructing an unbounded metric
space from the uniform structure of Z with an action of the group and in relating its
Floyd boundary to Z (a substitute for the visual boundary). The metric structure
coming from the Floyd boundary is used to establish the hyperbolicity of the space.
[Ger1, Ger2, GerP].

6.4 Hyperbolic fillings: the space of snapshots

In previous sections, we have seen that the boundary at infinity of a (proper)
geodesic hyperbolic space was a (compact) metric space endowed with a canon-
ical conformal gauge. Conversely, given a compact metric Z, we may construct
a hyperbolic space X the boundary of which is homeomorphic to Z with the
same conformal gauge. This point of view has proved to have important impact
on understanding the analytic properties of compact metric spaces. We will see
examples here and in Section 7.

Let Z be a compact metric space of diameter D. We use the notation from
§ 3.2. For a ball B ∈ Bk, we write |B| = k. Following a construction of G. Elek,
we define the graph of snapshots X = (V,E) of Z as follows. The set of vertices
are given by all the balls ∪kBk and we let a pair of balls B,B′ ∈ V (E) define an
edge of X if B 6= B′, ||B| − |B′|| ≤ 1 and if B ∩ B′ 6= ∅. We endow X with the
length metric which makes each edge isometric to [0, 1].

Proposition 6.10 (Bourdon & Pajot [BP4]). The space X of snapshots of Z is
hyperbolic in the sense of Gromov, and there exists a visual distance dv of param-
eter 1 on ∂X and a bi-Lipschitz homeomorphism (∂X, dv) → (Z, dZ). Moreover,
the space X is well-defined up to quasi-isometry.

This construction is very useful when analyzing the quasiconformal geometry
of a compact metric space. In particular, M. Carrasco-Piaggio relied on this space
to describe the Ahlfors-regular conformal gauge of a metric space and to establish
Theorem 5.19. This approach is reminiscent to P. Pansu’s coarse quasiconformal
structures [Pan4]. The space of snapshots is also used by J. Lindquist to define
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other types of combinatorial moduli which remind, in the way they are constructed,
P. Pansu’s coarse moduli [Lin].

Relationships between real analysis and hyperbolic geometry, based on this
space of snapshots, are described by S. Semmes in an appendix of [Gro5].

6.5 Applications to rigidity

We describe some applications which follow from our previous discussions. The
first application of quasi-Möbius mappings to hyperbolic geometry is the celebrated
Mostow rigidity theorem [Mos1, Mos2]. It has opened a whole body of research.
We refer to M. Bourdon’s survey for more details and references on the material
presented below and for other related works [Bou7].

6.5.1 Compact locally symmetric spaces of rank one

Rank one symmetric spaces are classified into three infinite families and one excep-
tional space —the Cayley plane built from the division algebra of Cayley numbers.
We explain the construction of the three infinite families and refer to [Mos2] for
the Cayley plane. Let K denote either the field of real, complex or quaternionic
numbers. Fix n ≥ 2. We consider on the (right) K-module Kn+1 a quadratic
form q of signature (n, 1) and we let Y nK = q−1({−1}). The symmetric space Xn

K
can then be defined by the set of K-lines intersecting Y nK ; it turns out that q in-
duces a Riemannian metric on Xn

K. We will also denote by X2
K the Cayley plane

where K will represent the division algebra of Cayley numbers. See [Bou7] and
the references therein for more details.

Conformal and topological dimensions enable us to distinguish these symmetric
spaces.

Theorem 6.11. The boundary ∂Xn
K has topological dimension ndimR K−1 and is

conformally modeled on GK and its (Ahlfors-regular) conformal dimension satisfies

confdim(AR)∂X
n
K = (n+ 1) dimR K− 2 .

If Xn
K is different from the Poincaré plane, then its boundary is a Loewner space,

and if K 6= R, then it is endowed with the Carnot-Carathéodory structure described
in § 5.5.3.

We now state Mostow’s rigidity theorem.

Theorem 6.12 (Mostow). Let M and N be locally symmetric and closed Rieman-
nian manifolds. Assume that dimM ≥ 3 and that both manifolds have isomorphic
fundamental groups. Then M and N are isometric.

We focus on rank one symmetric spaces. There are now several ways to ap-
proach this theorem, see [Bou7] for more details. One relies on the methods
developed in this survey: the isomorphism defines a quasi-isometry of the funda-
mental groups, hence of the universal covers. This quasi-isometry extends as an
equivariant quasi-Möbius mapping at infinity. Theorem 6.11 implies at once that
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the universal covers have to be isometric. Then the conformal elevator principle
can be used to prove that this equivariant quasi-Möbius map is actually genuinely
Möbius by using that quasi-Möbius maps are differentiable almost everywhere in
dimension at least two. This proves that M and N are isometric (since Möbius
transformations define isometries of the rank one symmetric spaces).

In dimension 2, the theorem does not hold since quasi-Möbius maps are not
always differentiable almost everywhere. If we start with two hyperbolic closed
surfaces H2/G1 and H2/G2 with isomorphic fundamental groups, then the argu-
ment above provides us with an equivariant quasi-Möbius mapping h : S1 → S1

such that h ◦ G1 = G2 ◦ h by identifying H2 with the unit disk D and ∂H2 with
the unit circle S1. Mostow’s theorem then becomes

Theorem 6.13 (Kuusalo [Kuu]). Either h is the restriction of a Möbius trans-
formation so that both surfaces are isometric or h is completely singular.

See also [Bwn] for a different approach. Further extensions to Fuchsian groups
of the first kind appear in [AZ, Bis1, Bis2] and in higher dimension in [Sul1].

Building on Theorem 5.27, P. Pansu obtains the following group-free strength-
ened rigidity theorem [Pan5].

Theorem 6.14 (Pansu). Any quasi-isometry of Xn
K lies at bounded distance from

an isometry, provided K denotes the field of quaternionic numbers or the division
algebra of Cayley numbers.

The main point here is that ∂Xn
K is modeled on the Heisenberg group GK and

that there is a canonical correspondence between Möbius transformations of the
boundary and isometries of the symmetric spaces.

Combined with Theorem 4.6 and Theorem 5.26, we obtain the following quasi-
isometric rigidity of fundamental groups of closed locally symmetric groups of
negative curvature.

Corollary 6.15 (quasi-isometric rigidity of symmetric spaces). Let G be a finitely
generated group quasi-isometric to a rank-one symmetric space Xn

K. Then there
exists a short exact sequence

1→ F → G→ H → 1

where F is finite and H is a subgroup of isometries of Xn
K which contains a finite

index subgroup Γ such that Xn
K/Γ is a closed manifold.

Mostow’s rigidity theorem has been the starting point of many generalizations.
One of them consists in looking for a characterization of locally symmetric closed
manifolds among Riemannian manifolds. This was achieved by U. Hamenstädt as
follows

Theorem 6.16 (Hamenstädt [Ham2]). Let M be a closed Riemannian manifold of
dimension at least two and of maximum sectional curvature (−1). Let us assume
that any geodesic of its universal covering belongs to an isometric copy of the
Poincaré plane. Then M is locally symmetric.
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The assumption provides a lot of rectifiable curves on the boundary at infinity
of the universal covering M̃ , yielding a Loewner structure on ∂M̃ . By looking
at the maximal isometrically embedded copies of real hyperbolic spaces, she is
able to recognize the Carnot-Carathéodory structure coming from a symmetric
space. An analogous characterization among homogeneous spaces was established
by C. Connell [Con].

Another kind of generalization of Mostow rigidity consists in allowing the fun-
damental group of a closed locally symmetric space (of rank one) to act on a more
general space such as CAT(-1) spaces that we briefly define. Let X be a geodesic
metric space and T be a geodesic triangle. A comparison triangle in the Poincaré
plane H2 is a geodesic triangle T ′ ⊂ H2 together with a map fT : T ′ → T which
is isometric on each edge. The space X is a CAT(-1) space if, for any geodesic
triangle the map fT is 1-Lipschitz, meaning that the triangles in X are thinner
than in hyperbolic space. These spaces are hyperbolic in the sense of Gromov but
enjoy much stronger properties [Bou1]. Examples include Hadamard manifolds
with sectional curvature bounded above by (−1).

Generalizing G. Mostow’s theorem and further work of U. Hamenstädt [Ham1],
M. Bourdon establishes the following rigidity of CAT(-1) spaces.

Theorem 6.17 (Bourdon [Bou2]). Let M = Xn
K/G be a rank one locally sym-

metric closed manifold of dimension at least three and with fundamental group G.
If G acts geometrically on a geodesically complete CAT(-1) space X, then X is
isometric to Xn

K.

In the real case, Theorem 5.13 leads to another generalization. In this direction,
we may associate to any hyperbolic metric space a coarse notion of curvature
following M. Bonk and T. Foertsch [BF]. Let (X,w) be a pointed hyperbolic space.
We will say that X has asymptotic upper curvature (−1) if there is a constant c > 0
such that, for all x0, . . . , xn,

d(w, [x0, xn]) ≥ min
0≤j<n

d(w, [xj , xj+1])− log n− c .

It can be shown that this condition implies the existence of visual distances with
visual parameters for all values ε ∈ (0, 1). The case ε = 1 is not necessarily
attained.

Theorem 6.18 (Kinneberg [Kin]). Let G be a group acting geometrically on a hy-
perbolic proper space X with asymptotic curvature (−1) and with boundary home-
omorphic to Sn−1, n ≥ 3. Then

lim
R→∞

1

R
log ]{g ∈ G, g(w) ∈ B(w,R)} ≥ n− 1

and equality holds if and only if there is a (1, c)-quasi-isometry between X and Xn
R

conjugating the action of G to that of a group of isometries.

One of the difficulties of the proof is to show, in the case of equality, that there
exists a visual distance with visual parameter ε = 1. This is achieved by using a
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length-volume estimate on high-dimensional cubes due to W. Derrick [Der]. From
there, K. Kinneberg shows how to reduce the proof to Theorem 5.13.

There are several features which make rank one symmetric spaces so special
and rigid. We list three properties which play an important role.

1. We may endow its boundary with a visual distance which is Q-regular and Q-
Loewner (for some Q > 1) so that quasi-Möbius maps enjoy many properties.

2. With this structure, Möbius transformations are exactly the boundary values
of isometries of the symmetric space.

3. Last but not least, Möbius transformations can be recognized from quasi-
Möbius maps using ergodic properties of geodesic flows —an observation due
to D. Sullivan [Sul2], see [Bou7] for details.

Fuchsian buildings are other examples of hyperbolic spaces which enjoy these prop-
erties as was shown by M. Bourdon, H. Pajot [Bou3, BP1, BP2] and X. Xie [Xie1].
We refer to these papers and [Bou7]. It turns out that the cotangent bundle has
dimension 1, so that every quasi-Möbius map is conformal by Theorem 5.31 and
actually Möbius. Therefore, any quasi-isometry lies at bounded distance from an
isometry as in Theorem 6.14.

6.5.2 Homogeneous spaces of negative curvature

Homogeneous manifolds of negative sectional curvature have been classified by
E. Heintze [Het2]. They are all isometric to solvable Lie groups G with a left-
invariant Riemannian metric of the form G = N oα R; the group N is a simply
connected nilpotent Lie group and the action of R on N is given by a derivation α
on the Lie algebra of N , the eigenvalues of which have positive real parts. Let us
call such a group G a Heintze group. According to Y. Cornulier, we may always
assume that the eigenvalues of the derivation are all positive and real, up to quasi-
isometry [Cor1]: we then say that G is purely real. When (N,α) is a Carnot group,
then G is a Heintze group of Carnot type; note that this need not be always the
case.

The boundary of a Heintze group ∂G is quasi-Möbius equivalent to the Alexan-
drov compactification of N , cf. Proposition 2.2. The rank 1 symmetric spaces
distinguish themselves as the only homogeneous spaces which admit finite volume
quotients [Het1]. It turns out that any isometry fixes the special point ∞ in the
non-symmetric case.

Following M. Bourdon’s exposition [Bou7], there are three main conjectures
governing our interests.

Conjecture 6.19. Let G be a purely real Heintze group which is not quasi-
isometric to a symmetric space.

1. Pointed sphere conjecture.— Any self-quasi-isometry of G preserves the
point at infinity.
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2. Quasi-isometric classification.— Any purely real Heintze group quasi-
isometric to G is isomorphic to G.

3. Quasi-isometric rigidity.— Any quasi-isometry between two Heintze groups
(quasi-isometric to G) lies at bounded distance from a (1, C)-quasi-isometry.

The conjectures all concern quasi-Möbius maps at infinity. The first says that
any quasi-Möbius map of ∂G fixes the special point ∞, the second says that if
the boundary of another group is quasi-Möbius equivalent, then they are Möbius
equivalent and the third is that any quasi-Möbius map is bi-Lipschitz. For a
general survey on the classification of locally compact groups including Heintze
groups, see [Cor2].

The pointed sphere conjecture was finally solved by M. Carrasco Piaggio when
G is not of Carnot type [CP3]; the particular case of a diagonalizable derivation
was previously dealt with by P. Pansu [Pan4] and X. Xie had dealt with the case
N Abelian or the real Heisenberg groups (see [Xie2, Xie3, Xie4] and the references
therein). The main idea of the proof is to show the existence of a foliation on
N ⊂ ∂G by rectifiable curves (for a visual metric) preserved by quasi-Möbius
maps. This foliation can be constructed as follows. Let µ denote the smallest
eigenvalue of α and let H < G be the closed connected subgroup whose Lie algebra
is generated by the µ-eigenvectors belonging to the µ-Jordan blocks of maximal
dimension. Then H is a proper subgroup when (N,α) is not a Carnot group and
any quasi-Möbius map preserves the left cosets of H. Nonetheless, the derivation
restricted to H defines a Carnot structure. The latter property implies that being
a Heintze group of Carnot type is a quasi-isometry invariant [CP3].

Remark 6.20. With the above notation, if the dimension m of the largest Jordan
blocks associated to µ satisfies m ≥ 2, then M. Carrasco Piaggio shows that the
conformal dimension of the boundary ∂G is not attained.

When N is a Carnot group, then H = G so H cannot be used to find some
special curves. Note also that ∂G is also a Loewner space so carries a lot of
rectifiable curves in all directions.

The quasi-isometric classification was established by P. Pansu for purely real
Carnot-type Heintze groups [Pan5], cf. Theorem 5.25. When N is Abelian, X. Xie
proved that the Jordan decomposition of the derivations of two quasi-isometric
purely real Heintze group (of Abelian type) are proportional, implying they are
isomorphic [Xie2]; this completed the classification initiated by P. Pansu assuming
the derivations are diagonalizable [Pan7]. X. Xie also worked out the case of real
Heisenberg groups endowed with diagonalizable derivations [Xie3].

X. Xie observed that the quasi-isometric rigidity can be obtained if quasisym-
metric maps preserve some foliations of the nilpotent groups: this enabled him to
treat the case of Heintze groups of Abelian type and the case of Heisenberg groups
with diagonalizable derivations. This idea was also exploited by M. Carrasco Piag-
gio who proved that any self-quasi-isometry of a purely real Heintze group which
is not of Carnot type is bi-Lipschitz at infinity by using the subgroup H mentioned
above [CP3].
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More generally, E. Le Donne and X. Xie formalized the idea in a general setting
that quasisymmetric maps which preserve foliations are bi-Lipschitz [LDX]. They
apply this general result to prove that quasisymmetric maps are bi-Lipschitz in
the setting of reducible Carnot groups. This means that the horizontal space V1

contains a nontrivial proper linear subspace invariant under the automorphisms
which preserve the strata. This subspace generates a Lie subgroup (of Carnot
type) which defines the needed foliation.

The quasi-isometric rigidity implies new generalizations of Theorem 4.6.

Theorem 6.21 (Xie [Xie2]). Let G be a purely real Heintze group of Abelian
type but not of Carnot type. Assume that Γ is a group of uniform quasi-Möbius
maps acting on ∂G. If the diagonal action on the set of distinct triples of ∂G is
cocompact, then Γ is conjugate to a so-called group of almost homotheties on N .

An almost homothety of N is a bi-Lipschitz map which is a perturbation of
the identity preserving the Jordan decomposition of the derivation; see [DP] for a
precise definition. The idea of the proof is to first remark that Γ fixes the point at
∞ is a group of bi-Lipschitz maps whose action is cocompact on the set of distinct
pairs. Work of T. Dymarz and I. Peng then enables him to conclude [DP].

Remark 6.22. Extensions of these results to model filform groups and millefeuille
spaces can be found in [Dym, DX].

6.5.3 Low dimensional topology and hyperbolic manifolds

A Kleinian group is a discrete subgroup of PSL2(C) which we view as acting both
on hyperbolic 3-space H3 via orientation-preserving isometries and on the Rie-
mann sphere Ĉ via Möbius transformations. Since Poincaré introduced them for
solving differential equations with algebraic coefficients at the end of the nine-
teenth century [Poi], Kleinian groups have continuously drawn a lot of attention,
playing a prominent role in complex analysis, conformal dynamical systems, hyper-
bolic geometry, Teichmüller theory and low dimensional topology, see for instance
[Kln, Ber, Sul2, Thu]. The subclass of convex-cocompact Kleinian groups is par-
ticularly relevant for the topology of 3-dimensional manifolds. These are finitely
generated Kleinian groups G for which there is a convex subset C ⊂ H3 invariant
under G such that C/G is compact. In particular, a cocompact Kleinian group is
convex-cocompact with C = H3. Convex-cocompact Kleinian groups are word hy-
perbolic and their boundaries coincide with their limit sets. A central conjecture
in low dimension is the following problem.

Conjecture 6.23. A word hyperbolic group with planar boundary contains a finite
index subgroup isomorphic to a convex-cocompact Kleinian group.

This would imply that we may drop the knowledge of the conformal gauge in
Paulin’s characterization of a word hyperbolic group when its boundary is planar.
Theorem 3.12 provides a positive answer when the boundary is homeomorphic to
a simple closed curve.
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The following two well-known conjectures can be derived from the above prob-
lem by specifying the boundary of the group:

Conjecture 6.24. Let G be a word hyperbolic group.

• (Cannon, [Can1, Conjecture 11.34]) If ∂G is homeomorphic to S2, then
G contains a finite index subgroup isomorphic to a cocompact Kleinian group.

• (Kapovich and Kleiner, [KK, Conjecture 6]) If ∂G is homeomorphic
to the Sierpiński carpet, then G contains a finite index subgroup isomorphic
to the fundamental group of a compact hyperbolic 3-manifold with non-empty
totally geodesic boundary.

Knowledge on the Ahlfors regular conformal dimension would provide a positive
answer to Conjecture 6.23.

Theorem 6.25. Let G be a non-elementary hyperbolic group with planar bound-
ary.

1. If ∂G is homeomorphic to S2, and if there is an Ahlfors regular distance
in its gauge of minimal dimension, then G contains a finite index subgroup
isomorphic to a cocompact Kleinian group.

2. If ∂G is non-homeomorphic to the sphere and if confdimAR(G) < 2, then G
is virtually isomorphic to a convex-cocompact Kleinian group.

The first part is due to M. Bonk and B. Kleiner [BnK3]; when G is a Coxeter
group, M. Bourdon and B. Kleiner were able to check its assumptions [BdK1]. The
second statement is proved in [Häı3] where other sufficient conditions can be found.
We draw the following corollary.

Corollary 6.26. Let G be a non-elementary hyperbolic group and let ∂G be en-
dowed with a metric from its conformal gauge. If there exists a quasisymmetric
embedding of ∂G into Ĉ, then G is virtually isomorphic to a convex-cocompact
Kleinian group.

If ∂G is homeomorphic to Ĉ, then this follows from Theorem 4.5. In the other
case, the proof boils down to essentially establishing that the quasisymmetric
embedding maps the boundary ∂G to a porous subset Λ of the Riemann sphere
i..e, any disk D centred on a point of Λ contains a ball of definite radius disjoint
from Λ. This implies that the Ahlfors-regular conformal dimension is strictly less
than two, so Theorem 6.25 applies.

Corollary 6.26 provides us with a positive answer to a weaker and somewhat
intermediate conjecture: a group quasi-isometric to a convex-cocompact Kleinian
group contains a finite-index subgroup isomorphic to a convex-cocompact Kleinian
group. It also enables us to restate Conjecture 6.23 in analytic terms:

Conjecture 6.27. If the boundary of a word hyperbolic group is planar, then it
admits a quasisymmetric embedding in the Riemann sphere Ĉ, when equipped with
a metric of its conformal gauge.



Actions of quasi-Möbius groups 49

We note that these conjectures do not hold in higher dimensions. M. Gromov
and W. Thurston have constructed closed manifolds in any dimension d ≥ 4 of
arbitrarily pinched negative curvature the fundamental groups of which are not
quasi-isometric to any rank one symmetric space [GT, Pan1]. There are also
counter-examples due to Y. Benoist, which are constructed as word hyperbolic
groups acting projectively, properly discontinuously and cocompactly on convex
domains [Ben].

7 Actions on functional spaces

The basic question of this section is the following: given a compact metric space
X, determine which functional spaces F = {f : X → R} are invariant under
precomposition by quasi-Möbius mappings? We will also see that some of these
functional spaces characterize the conformal gauge of compact metric spaces, cf.
Theorem 7.11. A detailed review of these questions will appear in the survey
[KSS]. We end up this section with a couple of words on `p-cohomology which is
the counterpart of these functional spaces from the hyperbolic point of view.

7.1 Poincaré inequality spaces

The setting of this section will be compact metric measure spaces (X, dX , µ) which
carry many rectifiable curves. The latter is best expressed in terms of Poincaré
inequalities in the sense of Heinonen and Koskela [HnK2].

Standard Poincaré inequalities provide control on the oscillations of a smooth
function in terms of the mean of its gradient. Let u : Ω→ R be a smooth function
defined in a domain of some Euclidean space, and let B ⊂ Ω be a ball. Then, for
any p ≥ 1, ∫

B

|u− uB |dx ≤ CdiamB

(∮
B

‖∇u‖pdx
)1/p

where

uB =

∮
B

udx =
1

|B|

∫
B

udx

denotes the mean value of u|B .

To state such an inequality on a metric space, we first need to find a substitute
for the gradient of a function. This is done on the base of the mean value theorem.
Let u : X → R be a function. An upper gradient for u is a measurable function
g : X → [0,∞] such that, for x, y ∈ X and any rectifiable curve γ joining x to y,

|u(x)− u(y)| ≤
∫
γ

g(z)ds(z)

where the integral over curves has been defined in § 2.3. Note that any function
admits g ≡ ∞ as an upper gradient.
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We say that the metric measure space (X, dX , µ) supports a (1, p)-Poincaré
inequality if there exist constant C ≥ 0 and τ ≥ 1 so that∫

B

|u− uB |dµ ≤ CdiamB

(∮
τ ·B

gpdµ

)1/p

holds for any continuous function u : X → R and any upper gradient g of u. On
the right hand side, the mean is taken over the slightly larger ball τ ·B, which takes
into account the fact that the space X need not be geodesic. Finally, we note that
the Hölder inequality implies that a space supports a (1, q)-Poincaré inequality for
q > p as soon as it supports a (1, p)-Poincaré inequality.

Definition 7.1. A PI space is a metric measure space (X, d, µ) such that µ is
doubling i.e., µ(2B) ≤ Cµ(B) for all balls B ⊂ X and uniform constant C ≥ 1
and which carries a (1, p)-Poincaré inequality for some p ≥ 1. We say that X is
a p-PI space to emphasize the power p in the Poincaré inequality.

Most of the analysis in Euclidean spaces can be carried out for PI spaces. In
particular, we have the following properties.

Theorem 7.2. Let X be a p-PI space. The following properties hold.

1. There is a constant C` ≥ 1 such that any pair of points x, y ∈ X can be
joined by a curve γ such that `(γ) ≤ C`d(x, y).

2. If X is Q-Ahlfors regular and p ≤ Q, then X is a Loewner space.

3. The space X is a differentiability space.

This result follows from works of J. Heinonen and P. Koskela [HnK2] and J. Cheeger
[Che]. We may also refer to [HKST2], Chapters 8 and 13 for a more detailed treat-
ment.

7.2 Sobolev spaces

Let (X, d, µ) be a PI space. If u : X → R is a measurable function, we say that g
is a p-weak upper gradient if

|u(x)− u(y)| ≤
∫
γ

g(x)ds(x)

holds for p-almost every curve i.e, the family of curves for which this does not hold
has vanishing p-modulus.

The Newtonian space W 1,p(X) is the set of measurable functions u : X → R
which admits a p-weak upper gradient g in Lp. This notion was introduced by
N. Shanmugalingam [Sha]. When X = Rn, then W 1,p(X) coincides with the classi-
cal Sobolev space W 1,p(Rn) of measurable functions which admit weak derivatives
in Lp. This leads to a Banach space with the norm

‖u‖1,p = ‖u‖p + inf
g
‖g‖p
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where g ranges over all weak upper gradients of u.

In PI spaces, Newtonian spaces have a very rich structure and have many
alternative characterizations. In particular, they concide with the Haj lasz-Sobolev
spaces previously defined by P. Haj lasz [Haj]. For any s ∈ (0,∞), and measurable
function u on X, a function g : X → R+ is called an s-gradient of u if there exists
a set E of measure 0 such that, for all x, y ∈ X \ E,

|u(x)− u(y)| ≤ [d(x, y)]s[g(x) + g(y)] .

In the Euclidean setting, g corresponds to the maximal function of |∇u|. Let
Ṁ1,p(X) denote the homogeneous space of measurable functions u such that

‖u‖Ṁ1,p(X) = inf
g
‖g‖Lp(X) is finite

where the infimum is taken over all p-weak upper gradients g of u. We also define
M1,p(X) as the set of measurable functions u such that

‖u‖Ṁ1,p(X) = ‖u‖Lp(X) + ‖u‖Ṁ1,p(X) is finite.

The advantage of the latter definition is that it makes sense, even in metric spaces
with no rectifiable curves.

Theorem 7.3 (Shanmugalingam). If X is a q-PI space and p > q, then M1,p(X)
and W 1,p(X) are isomorphic as Banach spaces.

Regarding the invariance of Sobolev maps, we have the following result which
generalizes the Euclidean setting.

Theorem 7.4 (Koskela & McManus [KoM]). Let (X, dX , µ) be a compact Q-
regular Q-PI space for some Q > 1 and (Y, dY , ν) be linearly locally connected
and Q-regular. If f : X → Y is quasi-Möbius, then u ∈ W 1,Q(Y ) if and only if
u ◦ f ∈W 1,Q(X).

Notes.— The book [HKST2] contains ample background and information on
Sobolev mappings in metric spaces.

7.3 Besov and Triebel-Lizorkin spaces

Besov and Triebel-Lizorkin spaces have been introduced as interpolation spaces
between the Lebesgue spaces Lp, the space BMO, the Sobolev spaces, the Hardy-
Sobolev spaces, etc. As such they form an important tool for harmonic analysis.
The literature from the last fifty years or so contains a large amount of different
but useful characterizations of Triebel-Lizorkin and Besov spaces; we just refer to
the book H. Triebel [Tri] for simplicity.

We describe here their definition following the work of P. Koskela, D. Yang
and Y. Zhou which provides us with an equivalent definition which makes sense
in general metric spaces [KYZ]. We then study their invariance under quasi-
Möbius mappings. All the results in this section are due to P. Koskela, D. Yang
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and Y. Zhou, unless explicitly stated. The results are not always stated in the
most general form; we refer to [KYZ] for that, and to the references therein.

We first adapt the notion of s-gradients as follows. A sequence of nonnegative
functions ~g = (gk)k∈Z is called a fractional s-Haj lasz gradient of u if there exists a
set E of measure 0 such that, for all x, y ∈ X\E such that 2−(k+1) ≤ d(x, y) ≤ 2−k,

|u(x)− u(y)| ≤ [d(x, y)]s[g(x) + g(y)] .

We first define

‖~g‖`q =

(∑
k∈Z
|gk|q

)1/q

for 1 ≤ q <∞ and ‖~g‖`∞ = supk |gk|; moreover we define

‖~g‖Lp(X,`q) = ‖ ‖~g‖`q ‖Lp(X) and ‖~g‖`q(Lp(X)) = ‖ ‖gk‖Lp(X) ‖`q .

Definition 7.5 (homogeneous Haj lasz-Triebel-Lizorkin spaces). Let (X, d, µ) be
a metric measure space, s ∈ (0,∞) and q ∈ (0,∞].

• If p ∈ (0,∞), the homogeneous Haj lasz-Triebel-Lizorkin space Ṁs
p,q(X) is

the space of all measurable functions u such that ‖u‖Ṁs
p,q(X) is finite, where

‖u‖Ṁs
p,q(X) = inf

~g
‖~g‖Lp(X,`q)

and where the infimum is taken over all fractional s-Haj lasz gradients of u.

• If p = ∞, the homogeneous Haj lasz-Triebel-Lizorkin space Ṁs
∞,q(X) is the

space of all measurable functions usuch that ‖u‖Ṁs
∞,q(X) is finite, where

‖u‖Ṁs
∞,q(X) = inf

~g
sup
k∈Z

sup
x∈X

∑
j≥k

∮
B(x,2−k)

[gj(y)]qdµ(y)


1/q

when q < ∞; when q = ∞, ‖u‖Ṁs
∞,∞(X) = ‖~g‖L∞(X,`∞). In both cases, the

infimum is taken over all fractional s-Haj lasz gradients of u.

Definition 7.6 (homogeneous Haj lasz-Besov spaces). Let (X, d, µ) be a metric
measure space, s ∈ (0,∞) and p, q ∈ (0,∞]. The homogeneous Haj lasz-Besov
space Ṅs

p,q(X) is the space of all measurable functions u such that ‖u‖Ṅsp,q(X) is

finite, where

‖u‖Ṅsp,q(X) = inf
~g
‖~g‖`q(Lp(X))

We introduce another version of Besov spaces, where the norm might be simpler
to grasp and which was used by M. Bourdon and H. Pajot [BP4, Bou5].
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Definition 7.7 (homogeneous Besov spaces). Let (X, d, µ) be a Q-Ahlfors regular
metric space, s ∈ (0,∞) and p, q ∈ [1,∞). The homogeneous Besov space Ḃsp,q(X)
is the space of all measurable functions u ∈ Lploc(X) such that ‖u‖Ḃsp,q(X) is finite,

where

‖u‖Ḃsp,q(X) =


∫ ∞

0

(∫
X

∮
B(x,t)

|u(x)− u(y)|pdµ(y)dµ(x)

)q/p
dt

t1+sq


1/q

.

The homogeneous Besov space Ḃsp(X) is the space of all measurable functions u ∈
Lploc(X) such that ‖u‖Ḃsp(X) is finite, where

‖u‖Ḃsp(X) =

{∫
X×X

|u(x)− u(y)|p

[d(x, y)]sp+Q
dµ(x)dµ(y)

}1/p

.

Fubini’s theorem implies that Bsp(X) = Bsp,p(X) (with equivalent norms). The
parameter s measures the smoothness of the function. For s ∈ (0, 1), and replacing
Lp-norms by L∞, we may observe that Bs∞(X) coincides with the space of s-Hölder
functions.

Proposition 7.8. Let (X, d, µ) be an Ahlfors regular metric space. We have the
following identifications.

1. If s ∈ (0,∞) and p ∈ (0,∞] then Ṁs
p,∞(X) = Ṁs,p(X).

2. If s ∈ (0,∞) and p, q ∈ (0,∞] then Ṅs
p,q(X) = Ḃsp,q(X).

3. If s ∈ (0,∞) and p ∈ [1,∞) then Ṁs
p,p(X) = Ḃsp(X).

The identification between the different forms of Besov spaces is established in
[GKZ].

Before stating the main results of this section, let us observe that if u belongs
to one of these functional spaces and f is quasi-Möbius, then it is not clear at all
—and sometimes wrong— that u ◦ f is even measurable. So we will say that f
induces a bounded operator between functional spaces F1 and F2 if u ∈ F2 has a
measurable representative v such that v ◦ f is in F1 and ‖v ◦ f‖1 ≤ C‖u‖2.

Also, we note that in a Q-regular space, the invariance of these spaces under
scaling is only satisfied when p = Q/s.

Theorem 7.9 (Quasi-Möbius invariance). Let X, Y be QX- and QY -regular com-
pact metric spaces respectively and let f : X → Y be a quasi-Möbius homeomor-
phism.

1. Let sX ∈ (0, QX) and sY ∈ (0, QY ) satisfy QX/sX = QY /sY . Then f
induces a bounded operator between ḂsXQX/sX (X) and ḂsYQY /sY (Y ).

2. If QX = QY = Q and X is Q-Loewner for some Q > 1, then, for any
s ∈ (0, 1] and for all q ∈ (0,∞], f induces a bounded operator between
Ṁs
Q/s,q(X) and Ṁs

Q/s,q(Y ).
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The Besov case was established by M. Bourdon and H. Pajot in [BP4]. When
s > 1, the Haj lasz-Triebel-Lizorkin spaces Ṁs

Q/s,q(X) turn out to be trivial when

X is Q-regular and Q-Loewner [GKZ]. These invariance properties come with
converse statements:

Theorem 7.10 (Regularity of composition operators). Let X, Y be Q-regular
connected compact metric spaces for some Q > 1, with Y linearly locally connected,
and let f : X → Y be a homeomorphism.

1. Assume that 0 < s < 1, 1 < q <∞. If f defines a bounded operator between
ḂsQ/s,q(Y ) and ḂsQ/s,q(X) and if q = Q/s then f is quasi-Möbius; if q 6= Q/s
and X is Q-Loewner, then f is bi-Lipschitz.

2. Assume that 0 < s < 1 and Q/(Q + s) < q ≤ ∞. If f induces a bounded
operator between Ṁs

Q/s,q(X) and Ṁs
Q/s,q(Y ) then f is quasi-Möbius.

The regularity in the Besov setting was established by M. Bourdon [Bou5] (q =
Q/s) and by H. Koch, P. Koskela, E. Saksman and T. Soto [KKSS] (q 6= Q/s),
generalizing [Fer2]. In the Haj lasz-Triebel-Lizorkin setting, this is due to M. Bonk,
E. Saksman and T. Soto [BSS]; for 1 < q < ∞, it was also established in [KKSS].
See also [HcK] for sharper results on Euclidean spaces.

All the proofs proceed similarly for q = Q/s. A Besov capacity can be de-
fined with good geometrical bounds (as for the conformal capacity in Q-regular
Q-Loewner spaces) by using continuous Besov functions. The boundedness of the
operator then implies that the homeomorphism quasi-preserves these capacities,
implying it is a quasi-Möbius mapping. The Triebel-Lizorkin spaces can be em-
bedded in some Besov spaces and vice-versa: this enables the authors to reduce
this more general case to the previous ones.

7.4 Royden-type algebras

In this section, we show that the functional spaces characterize metric spaces up
to quasi-Möbius mappings. If F is a space of functions as above, then we denote
by AF the set of continuous and bounded functions in the homogeneous space Ḟ
that we endow with the norm

‖f‖AF = ‖f‖∞ + ‖f‖Ḟ .

This space is reminiscent to Royden’s algebras defined for Riemann surfaces [Roy].

Theorem 7.11. Let X, Y be Q-regular compact metric spaces, for some Q > 1,
with Y linearly locally connected. Let F denote one of the following functional
spaces: W 1.Q, ḂsQ/s,q or Ṁs

Q/s,q, where 0 < s < 1 and Q/(Q + s) < q < ∞. If

there exists an algebra isomorphism T : AF (Y )→ AF (X), continuous with respect
to the homogeneous norms ‖·‖Ḟ , then there exists a quasi-Möbius homeomorphism
f : X → Y such that T is given by the composition by f . In particular, both X
and Y are quasi-Möbius equivalent.



Actions of quasi-Möbius groups 55

This result was first established for Sobolev functions by M. Nakai for Riemann
surfaces [Nak], L. Lewis for Euclidean domains [Lew] and J.Ferrand in the context
of Riemannian manifolds [Fer2]. M. Bourdon took care of the Besov spaces ḂsQ/s
in the context of Ahlfors regular spaces [Bou5].

Remark 7.12. In the Riemannian settings, the boundedness is expressed in the
norms AF . It is not clear that we may consider the same norms in metric spaces.
What needs to be proved is that a sequence of maps (un)n in AF , whose homo-
geneous norms tend to zero, tends to a constant up to a subsequence. The main
difference with the Riemannian setting is that, in one case, the norms are defined
through gradients which are defined infinitesimally whereas in the other case, upper
gradients are used, which are globally defined.

In view of Theorem 7.10, one has to prove that the isomorphism comes from a
composition operator by a homeomorphism. With our assumptions, (AF , ‖·‖AF ) is
a quasi-Banach algebra with unit which contains the algebra of Lipschitz functions.
Therefore, we may separate pairs of points of X by elements from A = AF . One
can also prove that, for all f ∈ A,

lim ‖fn‖1/nḞ = ‖f‖∞ .

This implies that the operator is also bounded with respect to the AF -norm. All
these properties can be checked by looking at the (fractional) Haj lasz gradients.

Assuming X and Y are compact simplifies several points of the proof. For
Z ∈ {X,Y }, let us consider the set of characters Z∗ of A i.e., the collection of
continuous and real-valued algebra morphisms χ : A → R. It follows that every
χ ∈ Z∗ has norm one and that Z∗ is closed in the dual space of A endowed with
the weak-* topology, hence is compact (and metrizable). Given an isomorphism
T : A(Y )→ A(X), we consider the adjoint T ∗ : X∗ → Y ∗ defined by T ∗(χ) = χ◦T :
this is a homeomorphism. The main idea is to relate these compact spaces to X
and Y .

We now fix Z ∈ {X,Y }. Since A = A(Z) separates points, Z embeds con-
tinuously into Z∗ via the map φ : Z → Z∗ defined by φ(z)(f) = f(z). We wish
to prove that φ(Z) = Z∗. To see this, we embed A into the Banach space C(Z∗)
of continuous functions via ψ : A → C(Z∗) defined by ψ(f)(χ) = χ(f). We note
that ψ is an injective algebra morphism. So its image is dense in C(Z∗) by the
Stone-Weierstrass theorem. If φ(Z) 6= Z∗, then we can find a nontrivial contin-
uous function g ∈ C(Z∗) such that g|φ(Z) ≡ 0 because Z is compact and Z∗ is
metrizable. But g is the uniform limit of a sequence (ψ(fk))k. Since g is vanishing
on φ(Z), we deduce that (fn)n tends uniformly to 0 on Z. But, for all k and all
χ ∈ Z∗,

|ψ(fk)(χ)| = |χ(fk)| = lim
n→∞

|χ(fnk )|1/n ≤ lim
n→∞

‖fnk ‖
1/n
A = ‖fk‖∞ .

From this, we deduce that g ≡ 0 —a contradiction.
Thus, the adjoint map T ∗ : X∗ → Y ∗ provides us with a map ϕ : X → Y by

setting ϕ(x) = y if T ∗φ(x) = φ(y). Hence, for all x ∈ X,

T (f)(x) = φ(x)(T (f)) = T ∗(φ(x))(f) = φ(ϕ(x))(f) = (f ◦ ϕ)(x) .
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7.5 `p-cohomology

The systematic study of Lp-cohomology in negatively curved spaces, with an em-
phasis on negatively curved homogeneous manifolds, was initiated by P. Pansu in a
series of papers, e.g. [Pan6, Pan3, Pan7]. One initial motivation was to find global
obstructions for the existence of Sobolev inequalities in Riemannian manifolds and
for the existence of conformal invariant distances. Other important applications
concern the optimization of pinching the sectional curvatures of Riemannian man-
ifolds of negative curvature.

P. Pansu shows that these cohomology groups are quasi-isometry invariants un-
der reasonable conditions and that `p-classes in degree 1 extend on the boundary at
infinity as Besov functions [Pan3]. This is the starting point of a whole field of re-
search connecting large scale quasi-isometry invariants of hyperbolic metric spaces
and quasiconformal geometry at infinity, starting with the works of M. Bourdon
and H. Pajot [BP4].

We focus on the cohomology groups associated to Ahlfors regular compact
metric spaces and refer to [Pan8] for an overview in the context of Riemannian
geometry.

7.5.1 Definition on graphs and first properties

Let Z be an Ahlfors regular compact metric space and let us consider the hyper-
bolic graph of its snapshots X defined in § 6.4. If f : X(0) → R, let us define
df : X(1) → R by df(v, w) = f(w) − f(v). Given p ≥ 1, the first `p-cohomology
group is (isomorphic to)

`pH1(X) = {f ∈ `p(X(0)), df ∈ `p(X(1))}/`p(X(0)) + R .

According to [BP4], these groups only depend on the conformal gauge of
X. Moreover, a theorem of Strichartz shows that there is a monomorphism
ϕ : `pH1(X) ↪→ Lp(Z)/R given by taking radial limits of representatives. More
precisely,

Theorem 7.13 (Bourdon & Pajot). The monomorphism ϕ : `pH1(X) ↪→ Lp(Z)/R
defines an isomorphism between `pH1(X) and the homogeneous Besov space Ḃ

Q/p
p (Z).

Let us recall that cohomology spaces are invariant under quasi-isometries and
that we have seen above that these Besov spaces are invariant under quasi-Möbius
maps. More importantly, it is relatively hard to construct nontrivial Besov func-
tions, whereas cohomology classes turn out to be much more manageable [Bou4,
BdK2].

Let us denote by Ap the Royden algebra of the Besov space introduced in the
previous paragraph: these are the continuous functions with finite homogeneous

B
Q/p
p -norm. This space was introduced in [Bou4]; see also [Ele, Gro4]. Define the

equivalence relation ∼p on Z by setting x ∼p y if, for any u ∈ Ap, u(x) = u(y), so
that Ap cannot separate those points.
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Let us recall that Lipschitz functions are contained in Ap if p is large enough,
and let us define two critical exponents.

• Let p 6=0 = inf{p ≥ 1, Ap 6= R} so that Ap is non trivial for all p > p6=0.

• Let psep = inf{p ≥ 1, Z/ ∼p= Z} so that we may separate any pair of
distinct points by elements of Ap for p > psep.

We have the following properties established by cohomology methods.

Theorem 7.14 (Bourdon & Kleiner [BdK2]). Let Z be a connected compact met-
ric space which contains a large group of uniform quasi-Möbius maps with linear
distortion function.

1. Equivalence classes of ∼p are continua.

2. We have psep = confdimARZ and psep ≥ p 6=0.

3. If Z satisfies the combinatorial Loewner property then psep = p6=0.

When Z is a Loewner space, the equality p6=0 = confdimARZ was established in
[BP4]. The control on the cohomology classes enables M. Bourdon and B. Kleiner
to construct many examples of word hyperbolic groups which satisfy (or not)
the combinatorial Loewner property, and with particularly good control on their
Ahlfors-conformal dimension. These examples generalize those from [Bou4], where
M. Bourdon constructs word hyperbolic groups with proper and non-trivial ∼p-
classes which are isomorphic to limit sets of malnormal quasiconvex subgroups.

Remark 7.15. In [Bou6], M. Bourdon studies `p-cohomology of higher degree and
also relates their triviality with the Ahlfors-regular conformal dimensions. This
enables him to find criteria (and examples) of word hyperbolic groups for which
1 < dimtop ∂G < confdimAR∂G, extending Theorem 5.12 to higher topological
dimension.

7.5.2 Generalizations

Let us note that the work of M. Carrasco Piaggio on the quasi-isometries of neg-
atively curved homogeneous manifolds mentioned in § 6.5.2 relies on the compu-
tation of cohomology groups where the decay at infinity satisfies some Orlicz-
regularity. The trace at infinity of these classes belong to a so-called Orlicz-Besov
space. He then considers the associated Royden algebra and is able to obtain some
structure at infinity necessary to exhibit rigidity phenomena [CP3].

Since Besov functions on compact metric spaces Z correspond to `p-cohomology
classes of their space of snapshots X, it is a natural question to understand what
are the counterparts of Sobolev functions and more generally functions in the
Triebel-Lizorkin spaces of Z in X. These questions were worked out by M. Bonk,
E. Saksman and T. Soto [BSk, BSS]. This point of view has enabled them to
increase the range on the parameters for the quasi-Möbius invariance.
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8 Actions on Sierpiński carpets

The standard Sierpiński carpet S is a self-similar fractal in the plane defined as
follows. Let Q0 = [0, 1] × [0, 1] denote the closed unit square. We subdivide Q0

into 3 × 3 subsquares of equal size in the obvious way and remove the interior of
the middle square. The resulting set Q1 consists of eight squares of sidelength
1/3. Inductively, Qn+1, n ≥ 1, is obtained from Qn by subdividing each of the
remaining squares in the subdivision of Qn into 3×3 subsquares and removing the
interiors of the middle squares. The standard Sierpiński carpet S is the intersection
of all the sets Qn, n ≥ 0.

It enjoys remarkable topological properties: any planar compact subset of topo-
logical dimension 1 admits a topological embedding into S. Moreover, any planar
compact connected space of topological dimension 1 that is locally connected and
has no local cut-points is homeomorphic to the Sierpiński carpet. We will denote in
the sequel a homeomorphic compact set a carpet. Here is another characterization.
Suppose X is a continuum embedded in the plane. Suppose its complement in the
plane has countably many connected components C1, C2, C3, . . . and suppose:

1. the diameter of Ci goes to zero as i→∞;

2. the boundary of Ci and the boundary of Cj are disjoint if i 6= j;

3. the boundary of Ci is a simple closed curve for each i;

4. the union of the boundaries of the sets Ci is dense in X.

Then X is homeomorphic to the Sierpiński carpet. The group of homeomorphisms
of S is very large: it is a Polish topological group which is totally disconnected
and one-dimensional. Its action has exactly two orbits: one of them is the union
of all simple closed curves which are the boundaries of complementary domains
[Bre, Kra].

This compact set appears naturally as Julia sets of rational maps, as limit sets
of Kleinian groups, and as boundaries of word hyperbolic groups. In these settings,
many natural questions arise from a geometric point of view. In particular, how
large is the group of quasi-Möbius maps? They are all homeomorphic. Are they
also quasi-Möbius equivalent?

8.1 Rigid carpets

A round carpet is a compact subset of the Euclidean sphere whose complementary
components are round disks and which is hormeomorphic to the Sierpiński carpet.

We have the following remarkable result:

Theorem 8.1 (Bonk, Kleiner & Merenkov). Let X ⊂ S2 be a round carpet.

1. Any quasi-Möbius map f : X → X is the restriction of a global quasi-Möbius
map.

2. If X has zero Lebesgue measure, then any quasi-Möbius map is the restriction
of a Möbius transformation.
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This theorem applies to any compact subset of the plane quasi-Möbius equiv-
alent to a round carpet: in that broader setting, one obtains a uniformly quasi-
Möbius extension. M. Bonk has established the following criterion:

Theorem 8.2 (Bonk). Let X ⊂ S2 be a carpet. It is quasi-Möbius equivalent to
a round carpet if the following properties hold

1. there exists K ≥ 1 such that any boundary component is a K-quasicircle;

2. there exists s > 0 such that ∆(C1, C2) ≥ s for any pairs of complementary
components.

The round carpet is unique up to Möbius transformation if the Lebesgue measure
of X is zero.

Corollary 8.3. Let X be a carpet quasi-Möbius equivalent to a round carpet. The
group of quasi-Möbius transformations is uniformly quasi-Möbius and discrete.

In particular, the latter theorem applies to the Sierpiński carpet. But for the
latter, we have the following rigidity statement:

Theorem 8.4 (Bonk and Merenkov). The group of quasi-Möbius maps of S is
finite and corresponds to its group of isometries.

Let us note that the Sierpiński carpet satisfies also the combinatorial Loewner
property [BdK1]. In [BM], and in [Zen], the authors prove rigidity for other families
of selfsimilar carpets defined by removing subsquares and they show that they are
not quasi-Möbius equivalent to one another.

8.2 The geometry of limit sets and Julia sets

Let M be an irreducible, orientable, compact 3-manifold with infinite fundamental
group, non-empty and incompressible boundary and no essential properly embed-
ded annuli. There exists a convex-cocompact Kleinian group K such that M is
homeomorphic to H3∪ΩK/K and its limit set ΛK is a round carpet of measure 0.

Proposition 8.5. Let G be a carpet group quasi-isometric to a Kleinian group
and which acts faithfully on its boundary. Then G has finite index in the group
GM of quasi-Möbius homeomorphisms of ∂G. The following properties also hold.

1. The group GM is the unique maximal word hyperbolic group in the quasi-
isometry class of G which acts faithfully on its boundary. It is isomorphic
to a Kleinian group.

2. Whenever G acts geometrically on a proper geodesic metric space, any self-
quasi-isometry of X lies at bounded distance from an element of GM .

3. For any group H quasi-isometric to G, H/F is isomorphic to a finite index
subgroup of GM where F is the kernel of the action of H on ∂H.

4. For any convex-cocompact Kleinian group K quasi-isometric to G, there is
a finite locally isometric covering p : MK → H3/GM .
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5. Any group quasi-isometric to G is commensurable to G.

M. Bourdon and B. Kleiner provide many examples of Kleinian carpet groups
whose limit sets have different geometric features using `p-cohomology methods
[BdK2]. Note that Theorem 5.12 implies that confdimG > 1 for any carpet group.

Theorem 8.6 (Bourdon & Kleiner). There exists a sequence of carpet groups
(Gn)n such that

lim
n→∞

confdimARGn = 1 .

Among those groups, some satisfy the combinatorial Loewner property, and others
do not.

Let f : Ĉ→ Ĉ be a rational map of degree d ≥ 2. which induces a dynamical
system by iteration. The Julia set Jf of f denotes the non-empty compact set
of points z such that the family of iterates (fn)n is not normal restricted to any
neighborhood of z. Denote by Cf = {f ′ = 0} the set of critical points and by Pf =
∪c∈Cf ∪n≥1 f

n(c) its postcritical set. There are many examples of rational maps
which have a Julia set with the topology of a carpet. In many instances, a small
perturbation of the rational map does not change the topology nor the geometry
of the Julia set. It is therefore natural to focus on the so-called postcritically finite
rational maps i.e., those for which Pf is finite. For those, we also have rigidity:

Theorem 8.7 (Bonk, Lyubich & Merenkov [BLM]). Let Jf be a carpet Julia set
of a postcritically finite rational map. The group of quasi-Möbius transformations
is finite, and corresponds to restrictions of Möbius transformations.

From this, M. Bonk, M. Lyubich and S. Merenkov deduce this surprising con-
sequence.

Corollary 8.8. The Julia set of a rational map is not quasi-Möbius equivalent to
the limit set of a Kleinian group.

Let us note that carpet limit sets of convex-compact Kleinian groups satisfy the
assumptions of Theorem 8.2, and carpet Julia sets of postcritially finite rational
maps as well, and, more generally, they share many geometric properties. Thus,
this corollary infers that there should be much finer geometric invariants which
should help classify conformal gauges.

Remark 8.9. Theorem 8.7 extends to those so-called semi-hyperbolic rational
maps for which no critical point accumulates the boundary of a periodic Fatou
component without landing on it [Zen].

8.3 A flexible carpet

We recall the main example in [Mer] which provides us with an example of a metric
carpet with an uncountable group of quasi-Möbius maps.

We first let Q = [0, 1]× [0, 1] and consider a slit Y0 = Q \ ({1/2} × [1/4, 3/4]).
The set Y0 contains 2 × 2 subsquares of sidelength 1/2. Remove from Y0 the



Actions of quasi-Möbius groups 61

corresponding vertical slits to each subsquare and denote by Y1 the resulting open
set. Proceed inductively to define (Yn)n, where Yn+1 is obtained from Yn by
removing middle vertical slits of the 2n+1 subsquares in Yn of sidelength 1/2n+1.

For each n, endow Yn with the length metric provided by the Euclidean metric
in the plane and let (Xn, dn) denote the completion of Yn. Note that each slit
becomes a Jordan curve which is a rescaled copy of R/Z.

There exist natural projections pn+1 : Xn+1 → Xn for each n ≥ 0. Let
X = lim←− (Xn, pn) denote the projective limit. Note that for any points x =

(xn)n and y = (yn)n, the sequence (dn(xn, yn))n is increasing and bounded, hence
convergent. The limit defines a metric dX on X. Take two copies of X and glue
them isometrically along the boundary of the outer square. Denote the result by
X̂. This is a sort of annulus. It comes with a projection p : X̂ → X0.

S. Merenkov establishes the following properties:

Theorem 8.10. The spaces X and X̂ are geodesic carpets, linearly locally con-
nected, Ahlfors regular of dimension 2. Their conformal dimension is 2. The
peripheral circles are uniform quasicircles, and are uniformly separated.

It follows that neither X nor X̂ admit any quasisymmetric embedding into S2.
Concerning their group of quasi-Möbius maps, S. Merenkov has established the
following properties:

Theorem 8.11. 1. The space X is rigid: its group of quasi-Möbius maps is
the group of isometries of X, isomorphic to Z/2Z× Z/2Z.

2. The group of quasi-Möbius maps of X̂ coincides with the group of bi-Lipschitz
homeomorphisms. It is uncountable.

The main point is that the branched foliation coming from the vertical curves
via the projection p plays a special role: only families of vertical curves may
have positive 2-modulus. Therefore, any quasi-Möbius map preserves the vertical
curves. For X this forces rigidity. For X̂, one may rotate along the vertical curves
and obtain maps of the form (x, y) 7→ (x, y + rx). Let us note that we obtain
drastically different behaviors compared to round carpets.
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dimensional boundary. Ann. Sci. École Norm. Sup. (4) 33(2000), 647–
669.

[Kei] Stephen Keith. A differentiable structure for metric measure spaces.
Adv. Math. 183(2004), 271–315.

[KL] Stephen Keith and Tomi Laakso. Conformal Assouad dimension and
modulus. Geom. Funct. Anal. 14(2004), 1278–1321.
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spaces. J. Differential Geom. 100(2015), 349–388.
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[Kra] Jósef Krasinkiewicz. On homeomorphisms of the Sierpiński curve. Prace
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Anal. 5(1995), 402–433.

[Mak] Vladimir Markovic. Quasisymmetric groups. J. Amer. Math. Soc.
19(2006), 673–715 (electronic).

[Man1] Gaven J. Martin. Discrete quasiconformal groups that are not the
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[MR0781540].

[Tuk1] Pekka Tukia. The space of quasisymmetric mappings. Math. Scand.
40(1977), 127–142.

[Tuk2] Pekka Tukia. A quasiconformal group not isomorphic to a Möbius
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d’Angers, France, 2015.


